

 Robert Oschwald

 DESCRIPTION

The Audit Logging plugin adds Grails GORM Events based Audit Logging capabilities to a Grails project and it also adds
support to domain models for hooking into the Grails GORM events system.

Support for the following closures are added: onSave, onDelete, and onChange. The onChange closure can be used in two ways.
First, it can be used with no parameters or it can be used with two parameters, oldMap and newMap.
The first parameter is a LinkedHashMap representing the old state of the object before the change was applied,
the second parameter is a LinkedHashMap representing the state of the object after changes are applied.

GORM Events hook into the 'beforeInsert' and the 'beforeUpdate' events which work great for preventing updates
but do not work well for 'Audit Logging' where we would need critical information about the entity that is only
available after these actions complete. We’ve chosen to prefix the handler names with "on" so that they do not conflict
with other handler names in other existing plugins.

Compatibility

	
For Grails 3.x use version 2.0.0 or above.

	
For Grails 2.x use version 1.0.0 or above.

	
For Grails 1.3.x use version 0.5.5.3.

	
For Grails ⇐ 1.2.0 use version 0.5.3.

ORM implementation dependency

Starting with version 1.0.0, this plugin is ORM mapper agnostic, so you can use it with the ORM mapper of your choice
(Hibernate3, Hibernate4, MongoDB, etc.).

Please note, that only Hibernate3 and Hibernate4 are tested during development. If an issue occurs with your used ORM mapper,
please file a GitHub issue.

 Robert Oschwald

 CHANGE LOG

	
2.0.6

	
Fix #142 Re-introduced truncateLength support (and changed config parameter from TRUNCATE_LENGTH to truncateLength)

	
Fixed verbose param default description in documentation (Thanks to Matthew Moss)

	
Fix #139 Allow whitelist of properties to be used instead of a ignore list.

	
2.0.5

	
Only pass session to actorClosure if a session actually exists. (Thanks to Dennie de Lange)

	
Updated syncHibernateState to use correct name array (Thanks to Matthias Born)

	
Fix ignore list not used for insert and delete (Backport from 1.x)

	
Fix #147 Document per-datasource auditLog.disabled config key

	
2.0.4

	
Added option to specify createdBy,lastUpdatedBy, dateCreated,lastUpdated fieldnames per domainclass

	
and removed blank constraint for nullable stampable properties.

	
Remove preDelete as stampable event, does not make sense to stamp a delete event. (Thanks to Dennie de Lange)

	
Constraint fixes

	
2.0.3

	
Fix #129 Issue with Hibernate stamping. Stamping was ignored with dynamicUpdate = true and stamping was ignored on cascading saves. (thanks to Dennie de Lange)

	
Fix #130 Docs for verbose mode

	
2.0.2

	
Fix #118, use Grails 3.0.10 internally.

	
Fix #126 Support Many-To-Many logging (thanks to Andrey Zhuchkov)

	
2.0.1

	
Fix #117 Clean build. Version 2.0.0 had issues with Spring Security due to unclean build.

	
Fix #116 (partially). Replacement Patterns do work, but trailing dots are ignored for now due to Grails 3.0.x limitations.

	
2.0.0

	
First Grails 3 version. Thanks to Graeme Rocher.

	
Added audit-quickstart command to create the AuditLog domain artifact

	
#96 Make identifiers available in the maps during onChange event. Thanks to dmahapatro.

	
branch: master.

	
For 1.0.x plugin version (Grails2), see 1.x_maintenance branch

	
1.0.5

	
Migration of JIRA to GitHub Issues

	
Fix #92 (Support for ignoring certain Events)

	
Starting with this release, the main branch for the 1.0.x series is 1.x_maintenance. Master branch is for Grails 3.0 support, now. Both branches will be tested by Travis-CI.

	
1.0.4

	
GPAUDITLOGGING-69 allow to set uri per domain object

	
GPAUDITLOGGING-62 Add identifier in handler map

	
GPAUDITLOGGING-29 support configurable id mapping for AuditLogEvent

	
GPAUDITLOGGING-70 support configurable datasource name for AuditLogEvent

	
GPAUDITLOGGING-74 Impossible to log values of zero or false

	
GPAUDITLOGGING-75 Support automatic (audit) stamping support on entities

	
1.0.3

	
GPAUDITLOGGING-64 workaround for duplicate log entries written per configured dataSource

	
GPAUDITLOGGING-63 logFullClassName property

	
1.0.2

	
GPAUDITLOGGING-66

	
1.0.1

	
closures

	
nonVerboseDelete property

	
provide domain identifier to onSave() handler

	
1.0.0

	
Grails >= 2.0

	
ORM agnostic implementation

	
major cleanup and new features

	
fix #99 Plugin not working with MongoDB as Only Database

	
Changed issue management url to GH.

	
#13 Externalize AuditTrailEvent domain to user

	
0.5.5.3

	
Added ability to disable audit logging by config.

	
0.5.5.2

	
Added issueManagement to plugin descriptor for the portal. No changes in the plugin code.

	
0.5.5.1

	
Fixed the title. No changes in the plugin code.

	
0.5.5

	
collections logging

	
log ids

	
replacement patterns

	
property value masking

	
large fields support

	
fixes and enhancements

	
0.5.4

	
compatibility issues with Grails 1.3.x

	
0.5.3

	
GRAILSPLUGINS-2135

	
GRAILSPLUGINS-2060

	
an issue with extra JAR files that are somehow getting released as part of the plugin

	
0.5.2

	
GRAILSPLUGINS-1887 and GRAILSPLUGINS-1354

	
0.5.1

	
fixes regression in field logging

	
0.5

	
GRAILSPLUGINS-391

	
GRAILSPLUGINS-1496

	
GRAILSPLUGINS-1181

	
GRAILSPLUGINS-1515

	
GRAILSPLUGINS-1811

	
changes to AuditLogEvent domain object uses composite id to simplify logging

	
changes to AuditLogListener uses new domain model with separate transaction

	
for logging action to avoid invalidating the main hibernate session.

	
0.4.1

	
repackaged for Grails 1.1.1 see GRAILSPLUGINS-1181

	
0.4

	
custom serializable implementation for AuditLogEvent so events can happen inside a webflow context.

	
tweak application.properties for loading in other grails versions

	
update to views to show URI in an event

	
fix missing oldState bug in change event

	
0.3

	
actorKey and username features allow for the logging of user or userPrincipal for most security systems.

	
Fix #31 disable hotkeys for layout.

 Robert Oschwald

 INSTALLATION

Add to your build.gradle project dependencies block:

/** Project dependencies **/
dependencies {
 ...
 compile 'org.grails.plugins:audit-logging:2.0.6'
}

Run

 grails compile

or another script that triggers dependency resolution.

After installing the plugin, you must perform the following command to let the plugin create the audit-logging domain class within your project.

Create your Domain Artifact using audit-quickstart

 grails audit-quickstart <your.package.name> <YourAuditLogEventClassName>

example:

 grails audit-quickstart org.myaudit.example AuditTrail

Afterwards, set your needed mapping and constraint settings accordinghly in the created Domain Artifact.

 Robert Oschwald

 PLUGIN USAGE

You can use the grails-audit-logging plugin in several ways.

1. Auditing of domain class

static auditable = true

Enables audit logging using the introduced domain class AuditLogEvent which will record insert, update, and delete events. Update events will be logged in detail with the property name and the old and new values.

2. Auditing plus domain event handlers

You may use the optional event handlers in your Domain classes. Example:

class Person {
 static auditable = true
 Long id
 Long version
 String firstName
 String middleName
 String lastName

 String email

 static constraints = {
 firstName(nullable:true,size:0..60)
 middleName(nullable:true,size:0..60)
 lastName(nullable:false,size:1..60)
 email(email:true)
 }

 def onSave = {
 println "new person inserted"
 // may optionally refer to newState map
 }
 def onDelete = {
 println "person was deleted"
 // may optionally refer to oldState map
 }
 def onChange = { oldMap,newMap ->
 println "Person was changed ..."
 oldMap.each({ key, oldVal ->
 if(oldVal != newMap[key]) {
 println " * $key changed from $oldVal to " + newMap[key]
 }
 })
 }//*/
}

3. Use event handlers only (no auditing)

You may choose to disable the audit logging and only use the event handlers. You would do this by specifying in your domain class:

static auditable = [handlersOnly:true]

With "handlersOnly:true" specified, no AuditLogEvents will be persisted to the database and only the event handlers will be called.

 Robert Oschwald

 AUDITING CURRENT USER INFORMATION (ACTORCLOSURE)

RUN== Configuration

The plugin configuration can be specified in the application.groovy file.
It supports Environments blocks for environment-specific configuration.

Since version 2.0.0, the configuration key has changed from "auditLog" to "grails.plugins.auditLog".
If you use the old configuration key, the plugin will log a notice.

	Property
	Default Value
	Meaning

	grails.plugin.auditLog.auditDomainClassName

	use "grails audit-quickstart" to create one

	Mandatory Domain Class Name for the AuditTrail Domain class. Mandatory.

	grails.plugin.auditLog.verbose

	true

	Column by column change logging in insert and delete events is enabled by default. You can disable it if you are not interested in value changes.

	grails.plugin.auditLog.logIds

	false

	If set to true, object-ids of associated objects are logged

	grails.plugin.auditLog.disabled

	false

	If set to true, audit logging is disabled, but the eventHandlers are still triggered. Note: You can set "auditLog.disabled" in DataSource configurations you do not want to have the AuditLogListener registered in. This could be useful if you have multiple DataSource definitions, but want to audit only a few of them.

	grails.plugin.auditLog.nonVerboseDelete

	false

	Log deletes non-verbosely if verbose = true

	grails.plugin.auditLog.logFullClassName

	false

	Log the entity including the package name

	grails.plugin.auditLog.truncateLength

	255

	Configure the truncation length of newValue detail information. Must me ⇐ field size of oldMap and newMap in your Auditing domain class. If you define the truncate length larger than your AuditTrail classes newValue maxSize constraint, the field size of newValue is used instead. If you do not define truncateLength, the written data in newValue is truncated at the field size boundary.

	grails.plugin.auditLog.stampEnabled

	false

	Add stamping fields to all auditable domain classes using AST transformation (dateCreated, lastUpdated, createdBy, lastUpdatedBy)

	grails.plugin.auditLog.stampAlways

	false

	always stamp Domain Classes regardless of @Stamp or "static stampable = true"

	grails.plugin.auditLog.stampCreatedBy

	createdBy

	Field name for stamping support

	grails.plugin.auditLog.stampLastUpdatedBy

	lastUpdatedBy

	Field name for lastUpdateBy field.

	actorClosure

	null

	Closure to get the principal. Details see below.

Auditing Current User Information (actorClosure)

With version >= 0.5, additional configuration can be specified in the application.groovy file of the project to help log the
authenticated user for various security systems.
For many security systems the defaults will work fine. To specify a property of the userPrincipal to be logged as the actor
name (the person performing the action which triggered the event, e.g. the username) add these lines to application.groovy:

grails {
 plugin {
 auditLog {
 actorClosure = { request, session ->
 session.user?.username
 }
 }
 }
}

It is currently not possible to define the actorClosure as a property like

grails.plugin.auditLog.actorClosure = {...}

Spring Security Core Plugin 1.1.2 or higher

If you save data from an unprotected URL (configAttribute:IS_AUTHENTICATED_ANONYMOUSLY), the principal is a String-object
not a Principal-object. To cope with this behaviour you should use the following Closure definition in application.groovy:

import org.codehaus.groovy.grails.plugin.springsecurity.SpringSecurityUtils

grails {
 plugin {
 auditLog {
 actorClosure = { request, session ->
 if (request.applicationContext.springSecurityService.principal instanceof groovy.lang.String){
 return request.applicationContext.springSecurityService.principal
 }
 def username = request.applicationContext.springSecurityService.principal?.username
 if (SpringSecurityUtils.isSwitched()){
 username = SpringSecurityUtils.switchedUserOriginalUsername+" AS "+username
 }
 return username
 }
 }
 }
}

Spring Security Core 1.0.1 Plugin

Based off of Jorge Aguilera’s example, the Spring Security Plugin uses the SpringSecurityService.

grails {
 plugin {
 auditLog {
 actorClosure = { request, session ->
 request.applicationContext.springSecurityService.principal?.username
 }
 }
 }
}

Acegi Plugin

Thanks to Jorge Aguilera for his example on how to integrate with the Acegi plugin:

grails {
 plugin {
 auditLog {
 actorClosure = { request, session ->
 return request.applicationContext.authenticateService.principal()?.username
 }
 }
 }
}

CAS Authentication

For example if you are using a system such as CAS you can specify the CAS user attribute using a special configuration
property to get the CAS user name. In application.groovy add the following lines:

import edu.yale.its.tp.cas.client.filter.CASFilter

grails {
 plugin {
 auditLog {
 actorClosure = { request, session ->
 session?.getAttribute(CASFilter.CAS_FILTER_USER)
 }
 }
 }
}

… and the audit_log table will have a record of which user and what controller triggered the event.

Shiro Plugin

With Shiro, add the following lines to use the currently logged in user’s username:

grails {
 plugin {
 auditLog {
 actorClosure = { request, session ->
 org.apache.shiro.SecurityUtils.getSubject()?.getPrincipal()
 }
 }
 }
}

Other security systems

If you are using a custom authentication system in your controller that puts the user data into the session you can set
up the actorClosure to work with your security system instead.

Property Ignore List

It’s possible to configure which properties get ignored by auditing. The default ignore field list is:

['version','lastUpdated'].

If you want to provide your own ignore list specify the ignore list like this in domain classes:

static auditable = [ignore:['version','lastUpdated','myField']]

If instead you want to trigger on version and lastUpdated changes you may specify an empty ignore list:

static auditable = [ignore:[]]

Whitelist properties to audit (since 2.0.6)

Since version 2.0.6, instead of blacklisting which properties to ignore, you can also define a list of properties to audit (whitelist) per Domain class.
The auditableProperties setting has precedence over ignore. Thanks to Paul Taylor for this feature.

static auditable = [auditableProperties: ['name', 'famous', 'lastUpdated']]

Verbose mode

You can enable verbose mode. If enabled, column by column change logging in insert and delete events is enabled.
Old- and new values are stored in detailed to the audit logging table. Enable verbose logging with:

 verbose = true

This setting is enabled by default.

When enabling verbose audit logging, you may get errors if you explicitly flush the session. In this case, do not enable
verbose logging. Starting with version 1.0.1 of the plugin, additional closures are available to disable logging or
verbose mode in a code block.

Logging of associated objectIds (since 0.5.5)

You can log the object-ids of associated objects. Logging will be performed in the format: "[id:<objId>]objDetails".
You can enable id-logging with

 logIds = true

This setting is disabled by default.

Property value masking (since 0.5.5)

You can configure properties to mask on a per-Domain-Class base. If properties are defined as masked, their values are
not stored into the audit log table if verbose mode is enabled. Instead, a mask of "" will be logged.
By default, "password" properties are masked. You can mask property fields in domain classes like this:

static auditable = [mask:'password','otherField']

Verbose log truncation length

If you enabled verbose mode, you can configure the truncation length of detail information in the oldValue and newValue
columns (Default is 255). Configure the truncateLength in application.groovy:

 truncateLength = 400 // don't forget to ensure "oldValue" and "newValue" fields are large enough!

When you set truncateLength to a value > 255 you must ensure that oldValue and newValue fields in your audit-log domain class
are large enough. Example setting with the same maxSize constraints as the former "largeValueColumnTypes" setting:

static constraints = {
 // for large column support (as in < 1.0.6 plugin versions)
 oldValue(nullable: true, maxSize: 65534)
 newValue(nullable: true, maxSize: 65534)
}

When you forgot to set the constraints in your AuditLog class while setting truncateLength > 255,
a truncation warning may occur and only partial information is logged.

Transactional AuditLog events

In application.groovy, you may specify whether the Audit Log uses transactions or not. If set to true then the logger will begin
and commit transactions around audit log save events.
If set to false (the default), the AuditLog may be persisted without a transaction wrapping its call to save.
This setting should not be changed from defaults lightly as it can cause problems in integration testing.

 transactional = true

You are only likely to want to change the defaults if you are working with a transactional database in test and production.

Disable auditing by config (since 0.5.5.3)

You can disable auditing by config. If you disable auditing, event handlers are still triggered but no changes are comitted
to the audit log table. This can be used e.g. if you need to bootstrap many objects and want to programmatically disable
auditing to not slow down the bootstrap process or if you want to audit log by Enviroment. With version >= 1.0.0 of the
plugin, you can disable auditing on a per-datasource base as well Currently, disabling the plugin on a per-datasource base
does not work. See GPAUDITLOGGING-68

 disabled = true

Disabling in DataSource.groovy is currently not possible.

This setting is "false" by default (auditing is enabled).

nonVerboseDelete logging (since 1.0.1)

If verbose logging is enabled (see above), you can log deletes in a non-verbose manner. This means, only the delete event
is logged, but not the properties the deleted object hold prior the deletion.

 nonVerboseDelete = true

This setting is "false" by default (verbosity of deletes depend on the verbose setting).

log full domain class name (since 1.0.3)

By default, only the entity class name is logged. If you want to log the entity full name (including the package name),
you can enable full logging. Thanks to tcrossland for this feature.

 logFullClassName = true

This setting is "false" by default (entity name is logged).

getAuditLogUri closure (since 1.0.4)

By default, the "uri" field is filled with the request uri which caused the action.
You can define a closure "getAuditLogUri" on a per-domain object base to define what should be written to the AuditLog
"uri" field.

class User {
 static auditable = true
 static belongsTo = [Client]

 def getAuditLogUri = {
 clientId as String
 }
}

You need to take special care how you obtain the "uri" data in the getAuditLogUri closure.
It is recommended to not perform costly calls.

Domain class stamping support (since 1.0.4)

Since version 1.0.4, it is possible to enable domain class stamping support.
With this feature enabled, all domain classes annotated with @Stamp or with field "static stampable = true" will get
the fields dateCreated, lastUpdated, createdBy, lastUpdatedBy using an AST transformation.
You can create your own StampASTTransformation implementation for your specific needs.
The createdBy and lastUpdatedBy fieldnames can be declared in application.groovy.
These fields will be filled with the result of the actor closure on the event PreInsert, PreUpdate and PreDelete.
Thanks to tkvw for this feature.

stampEnabled = true // enable stamping support
stampAlways = false // always stamp domain classes, regardless of @Stamp or static stampable = true existence
stampCreatedBy = 'createdBy' // fieldname
stampLastUpdatedBy = 'lastUpdatedBy' // fieldname

Domain class stamping configuration (since 2.0.5)

Since version 2.0.5, it is possible to specify the field configuration on a per domain-class base in the @Stamp annotation.
With this, you can specify the createdBy, lastUpdatedBy, dateCreated, lastUpdated fieldnames per domain class.

Adding @Stamp to the entity disables the default Grails autoStamping by adding "autoTimestamp false" to the mapping (this can’t be configured).

Example:

 @Stamp(
 createdBy = @StampInfo(fieldname="originalWho", type=Date.class),
 dateCreated = @StampInfo(fieldname="originalWhen", type=Date.class),
 lastUpdatedBy = @StampInfo(fieldname="lastWho", nullable = true),
 lastUpdated = @StampInfo(fieldname="lastWhen", nullable = true)
)

Ignoring certain events (since 1.0.5 / 2.0.0)

Since version 1.0.5, it is possible to ignore certain events on a per-domain base.

static auditable = [ignoreEvents:["onChange","onSave"]]

Domain Name replacements (since 2.0.1)

With the replacementPatterns Map, it is possible to rewrite domain names, e.g. to remove dedicated package names:

replacementPatterns = ["local.example.xyz.User":"UserDomain"]

Example configuration

Example application.groovy configuration with various settings as described above:

// AuditLog Plugin config
grails {
 plugin {
 auditLog {
 auditDomainClassName = 'my.example.project.MyAuditTrail'
 verbose = true // verbosely log all changed values to db
 logIds = true // log db-ids of associated objects.
 truncateLength = 1000
 cacheDisabled = true // only for 1.x. Disable caching of AuditDomainClass.
 replacementPatterns = ["local.example.xyz.":""] // replace with empty string.
 actorClosure = { request, session ->
 // SpringSecurity Core 1.1.2
 if (request.applicationContext.springSecurityService.principal instanceof groovy.lang.String){
 return request.applicationContext.springSecurityService.principal
 }
 def username = request.applicationContext.springSecurityService.principal?.username
 if (SpringSecurityUtils.isSwitched()){
 username = SpringSecurityUtils.switchedUserOriginalUsername+" AS "+username
 }
 return username
 }
 stampEnabled = true
 stampAlways = true
 }
 }
}

 Robert Oschwald

 IMPLEMENTATION

AuditLogEventListener

The Audit Logging plugin registers a PersistenceEventListener (AuditLogListener) bean per datasource, which listens to GORM events.

Plugin Descriptor

The Plugin Descriptor (AuditLogListenerGrailsPlugin) configures the plugin during startup.

	
Configures the plugin either by default values - see DefaultAuditLogConfig.groovy - or by user configured settings.

	
Registers a PersistenceEventListener bean per datasource

OEBPS/nav.xhtml

Grails Audit Logging Plugin - Reference Documentation

Table of Contents

		Description

		Change Log

		Installation

		Plugin Usage

		Auditing Current User Information (actorClosure)

		Implementation

OEBPS/images/jacket/cover.png

OEBPS/images/avatars/default.jpg

OEBPS/images/headshots/default.jpg

