
1

BLAZEDS

 | Frames No Frames

http://grails.org
http://springsource.com

2

BlazeDS Plugin - Reference Documentation

Authors: Sebastien Arbogast, Burt Beckwith

Version: 2.0

Table of Contents

1 Introduction to the BlazeDS Plugin ... 3
1.1 Getting Started ... 3

2 Configuration ... 4
3 General Usage ... 5

3

1 Introduction to the BlazeDS Plugin

The BlazeDS plugin makes it easier to build Grails-powered Rich Internet Applications using the Adobe BlazeDS
remoting and messaging framework, as well as the plugin to secure your application. TheSpring Security Core
plugin also adds support for lazy loading to make it easier to work with GORM and Hibernate.

1.1 Getting Started

The first step is installing the plugin:

grails install-plugin blazeds

This will transtitively install the , and plugins. Refer to the documentationSpring Security Core Spring Security ACL
for these plugins for configuration options. At a minimum you'll need to run the script tos2-quickstart
configure Spring Security Core, e.g.

grails s2-quickstart com.yourcompany.yourapp User Role

The Spring Security ACL plugin has no required initialization steps.

http://opensource.adobe.com/wiki/display/blazeds/BlazeDS/
http://grails.org/plugin/spring-security-core
http://grails.org/plugin/spring-security-core
http://grails.org/plugin/spring-security-acl

4

2 Configuration

There are a few configuration options for the plugin.

Property Default Meaning

grails.plugin.blazeds.defaultMessageChannels none a comma-delimited String listing the default messaging channels, e.g.
'my-streaming-amf,my-longpolling-amf,my-polling-amf'

grails.plugin.blazeds.defaultRemoteChannels none a comma-delimited String listing the default remoting channels, e.g.
'my-amf'

grails.plugin.blazeds.converterNames
[HibernateProxyConverter,
PersistentCollectionConverterFactory,
JpaNumericAutogeneratedIdConverter]

a list of class names of converters used when serializing class instances to
clients

grails.plugin.blazeds.proxyIgnoreProperties

'class', 'metaClass',
'hibernateLazyInitializer' plus all event
names from
grails.persistence.Event

a list of property names to ignore when serializing class instances to clients

grails.plugin.blazeds.disableOpenSessionInView false set to to disable the Open Session in View filtertrue

5

3 General Usage

Runtime configuration
The plugin manages the configuration of BlazeDS. This includes configuring

 as a listener in web.xml along with the flex.messaging.HttpFlexSession
 servlet for use by Flash Builder. It also configures flex.rds.server.servlet.FrontEndServlet

 URLs to be intercepted and handled as BlazeDS requests./messagebroker/*

Data serialization
There are a few options for configuring how class instances are serialized to clients. All of the standard BlazeDS
rules apply, but having Hibernate in the mix complicates things because of lazy-loaded collections and many-to-one
references.
By default an Open Session in View filter is registered unless this is disabled by setting

 to in . This acts likegrails.plugin.blazeds.disableOpenSessionInView true Config.groovy
the analagous interceptor that Grails registers for controller requests, starting and binding a thread-local Hibernate
Session at the beginning of a BlazeDS request and flushing and closing it after the response is rendered. This allows
you to not have to worry about lazy loading exceptions when using domain classes that refer to other lazy-loaded
classes.
There's a significant performance concern here though since you can potentially render a very large object graph to
the client when only a small amount of data is needed. One option is to use Data Transfer Objects (DTOs) that you
create using data from persistent domain classes. This allow you to control exactly what data gets sent to your clients.
Another option is to use the data converters that the plugin registers for you by default. These include

 which sends a value for any uninitialized many-to-one reference, and HibernateProxyConverter null
 which does the same for uninitialized collections. You can explicitly initializePersistentCollectionConverterFactory

any required many-to-one references or collections using the method.org.hibernate.Hibernate.initialize()
You can remove any of the configured converters (or add your own) by changing the value of

 in , which isgrails.plugin.blazeds.converterNames Config.groovy
['org.springframework.flex.core.io.HibernateProxyConverter,
'org.springframework'flex.core.io.PersistentCollectionConverterFactory',
'org.springframework.flex.core.io.JpaNumericAutogeneratedIdConverter'] by default.

Grails services as remote destinations
It's simple to access a Grails service as a remote service from Flex - just annotate the service with the

 annotation. BlazeDS handlesorg.springframework.flex.remoting.RemotingDestination
invoking method calls and marshalling parameters and return values for you.
One thing that's important to note is that although there is a configuration file (createdservices-config.xml
when the BlazeDS plugin is installed) you probably won't need to make many changes there. In typical BlazeDS
applications you would register remote services using XML, but Grails services are well suited as candidates for
remote services.
The plugin also handles service reloading for you and re-registers recompiled annotated services as remoting
destinations.

Manual configuration
You're not limited to using Grails services as the server-side implementation of remote services. You can use any
class like you would in a non-Grails application, and the best place to configure this is in

 using the BeanBuilder syntax equivalent of the Springgrails-app/conf/spring/resources.groovy
Flex XML configuration.
For example, this resources.groovy file contains four messaging destinations and two remoting destinations.
Remoting destinations are configured like any other Spring bean, with the addition of a

 child element, optionally with configuration options. See the flex.'remoting-destination'() Spring Flex
documentation for more information on what's available.

http://static.springsource.org/spring-flex/docs/1.5.x/javadoc-api/org/springframework/flex/core/io/HibernateProxyConverter.html
http://static.springsource.org/spring-flex/docs/1.5.x/javadoc-api/org/springframework/flex/core/io/PersistentCollectionConverterFactory.html
http://docs.jboss.org/hibernate/stable/core/api/org/hibernate/Hibernate.html#initialize%28java.lang.Object%29
http://www.springsource.org/spring-flex

6

import flex.management.jmx.MBeanServerGateway
beans = {
 xmlns flex: 'http://www.springframework.org/schema/flex'
 flex.'message-destination'(id: 'chat')
 flex.'message-destination'(id: 'secured-chat', 'send-security-constraint': 'trusted')
 flex.'message-destination'(id: 'simple-feed')
 flex.'message-destination'(id: 'market-feed', 'allow-subtopics': , 'subtopic-separator': '.')true
 securityHelper(Security3Helper) {
 flex.'remoting-destination'()
 }
 RuntimeManagement(MBeanServerGateway) {
 flex.'remoting-destination'(channels: 'my-amf, my-secure-amf')
 }
}

