
1

Spring Security Core plugin

Spring Security Core Plugin - Reference Documentation
Authors: Burt Beckwith, Beverley Talbott

Version: 2.0.0

Table of Contents

1 Introduction to the Spring Security Plugin

1.1 Configuration Settings Now in Config.groovy

1.2 Getting Started

2 What's New in Version 2.0

3 Domain Classes

3.1 Person Class

3.2 Authority Class

3.3 PersonAuthority Class

3.4 Group Class

3.5 PersonGroup Class

3.6 GroupAuthority Class

3.7 Requestmap Class

4 Configuring Request Mappings to Secure URLs

4.1 Defining Secured Annotations

4.2 Simple Map in Config.groovy

4.3 Requestmap Instances Stored in the Database

4.4 Using Expressions to Create Descriptive, Fine-Grained Rules

5 Helper Classes

5.1 SecurityTagLib

5.2 SpringSecurityService

5.3 SpringSecurityUtils

6 Events

6.1 Event Notification

6.2 Registering an Event Listener

6.3 Registering Callback Closures

7 User, Authority (Role), and Requestmap Properties

8 Authentication

8.1 Basic and Digest Authentication

8.2 Certificate (X509) Login Authentication

8.3 Remember-Me Cookie

2

8.4 Ajax Authentication

9 Authentication Providers

10 Custom UserDetailsService

11 Password and Account Protection

11.1 Password Hashing

11.2 Salted Passwords

11.3 Account Locking and Forcing Password Change

12 URL Properties

13 Hierarchical Roles

14 Switch User

15 Filters

16 Channel Security

17 IP Address Restrictions

18 Session Fixation Prevention

19 Logout Handlers

20 Voters

21 Miscellaneous Properties

22 Tutorials

22.1 Using Controller Annotations to Secure URLs

23 Controller MetaClass Methods

24 Internationalization

3

1 Introduction to the Spring Security Plugin
The Spring Security plugin simplifies the integration of into Grails applications. TheSpring Security
plugin provides sensible defaults with many configuration options for customization. Nearly everything is
configurable or replaceable in the plugin and in Spring Security itself, which makes extensive use of
interfaces.

This guide documents configuration defaults and describes how to configure and extend the Spring
Security plugin for Grails applications.

Release History and Acknowledgment

December 7, 2015

2.0.0 release

November 16, 2015

2.0-RC6 release

June 4, 2015

2.0-RC5 release

July 8, 2014

2.0-RC4 release

May 19, 2014

2.0-RC3 release

October 4, 2013

2.0-RC2 release

JIRA Issues

October 3, 2013

2.0-RC1 release

April 6, 2012

1.2.7.3 release

JIRA Issues

February 2, 2012

1.2.7.2 release

JIRA Issues

January 18, 2012

1.2.7.1 release

JIRA Issues

December 30, 2011

http://projects.spring.io/spring-security/
http://jira.grails.org/issues/?jql=project%20%3D%20GPSPRINGSECURITYCORE%20AND%20fixVersion%20%3D%20%22Grails-Spring-Security-Core%202.0%22%20ORDER%20BY%20updated%20DESC%2C%20priority%20DESC%2C%20created%20ASC
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=13100
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=13062
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=13051

4

1.2.7 release

JIRA Issues

December 2, 2011

1.2.6 release

JIRA Issues

December 1, 2011

1.2.5 release

October 18, 2011

1.2.4 release

October 15, 2011

1.2.3 release

October 15, 2011

1.2.2 release

JIRA Issues

August 17, 2011

1.2.1 release

JIRA Issues

July 31, 2011

1.2 release

JIRA Issues

May 23, 2011

1.1.3 release

JIRA Issues

February 26, 2011

1.1.2 release

February 26, 2011

1.1.1 release

JIRA Issues

August 8, 2010

1.1 release

JIRA Issues

August 1, 2010

1.0.1 release

http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=13025
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=13024
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=12907
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=12811
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=12503
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=12502
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=11909
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=11908

5

July 27, 2010

1.0 release

JIRA Issues

July 16, 2010

0.4.2 release

JIRA Issues

June 29, 2010

0.4.1 release

JIRA Issues

June 21, 2010

0.4 release

JIRA Issues

May 12, 2010

0.3.1 release

JIRA Issues

May 12, 2010

0.3 release

JIRA Issues

May 2, 2010

0.2 release

April 27, 2010

initial 0.1 release

This plugin is based on work done for the plugin by Tsuyoshi Yamamoto.Acegi

1.1 Configuration Settings Now in Config.groovy
The Spring Security plugin maintains its configuration in the standard file. DefaultConfig.groovy
values are in the plugin's file, and yougrails-app/conf/DefaultSecurityConfig.groovy
add application-specific values to the file. The twograils-app/conf/Config.groovy
configurations will be merged, with application values overriding the defaults.

This structure enables environment-specific configuration such as, for example, fewer structure-restrictive
security rules during development than in production. Like any environment-specific configuration
parameters, you wrap them in an block.environments

http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=11907
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=11906
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=11905
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=11904
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=11903
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=11902
https://grails.org/plugin/acegi/

6

The plugin's configuration values all start with
 to distinguish them from similarly namedgrails.plugin.springsecurity

options in Grails and from other plugins. You must specify all property overrides
with the suffix. For example, you specifygrails.plugin.springsecurity
the attribute as:password.algorithm

grails.plugin.springsecurity.password.algorithm='bcrypt'

in Config.groovy

1.2 Getting Started
Once you install the plugin, you simply run the initialization script, , and make any requireds2-quickstart
configuration changes in . The plugin registers filters in , and alsoConfig.groovy web.xml
configures the Spring beans in the application context that implement various pieces of functionality.
Grails dependency management determines which jar files to use.

To get started using the Spring Security plugin with your Grails application, see .Tutorials

You do not need to know much about Spring Security to use the plugin, but it can be helpful to
understand the underlying implementation. See .the Spring Security documentation

https://docs.spring.io/spring-security/site/docs/3.2.x/reference/htmlsingle/

7

2 What's New in Version 2.0
There are many changes in the 2.x versions of the plugin from the older approaches in 1.x.

Package changes

All classes are now in the package or a subpackage. The namesgrails.plugin.springsecurity
tend to correspond to the analagous Spring Security classes where appropriate, for example

 i s i n t h e M u t a b l e L o g o u t F i l t e r
 package to correspondgrails.plugin.springsecurity.web.authentication.logout

with the package.org.springframework.security.web.authentication.logout

Some of the changes were more subtle though; for example all classes in the old
 packages and subpackages are now in grails.plugins.springsecurity

, only one character different. This will result in a non-trivialgrails.plugin.springsecurity
upgrade process for your applications, but that is a benefit as it will hopefully point you at other important
changes you might have otherwise missed.

Configuration prefix changes

The prefix used in for the plugin's configuration settings has changed from Config.groovy
 to .grails.plugins.springsecurity grails.plugin.springsecurity

More aggressively secure by default

In 1.x it was assumed that defaulting pages to not be secured, and configuring guarded URLs as needed,
was a more pragmatic approach. Now however, all URLs are initially blocked unless there is a request
mapping rule, even if that rule allows all access. The assumption behind this change is that if you forget
to guard a new URL, it can take a long time to discover that users had access, whereas if you forget to
open access for allowed users when using the "pessimistic" approach, nobody can access the URL and the
error will be quickly discovered. This approach is more work, but much safer.

This is described in more detail .here

Logout POST only

By default only POST requests are allowed to trigger a logout. To allow GET access, add this

grails.plugin.springsecurity.logout.postOnly = false

bcrypt by default

The default password hashing algorithm is now bcrypt since it is a very robust hashing approach.
 is similar and is also supported. You can still use any message digest algorithm that is supportedPBKDF2

in your JDK; see for the available algorithms.this Java page

New applications should use bcrypt or PBKDF2, but if you didn't change the default settings in previous
versions of the plugin and want to continue using the same algorithm, use these settings:

https://en.wikipedia.org/wiki/PBKDF2
https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html

8

grails.plugin.springsecurity.password.algorithm = 'SHA-256'
grails.plugin.springsecurity.password.hash.iterations = 1

Session Fixation Prevention by default

Session Fixation Prevention is now enabled by default, but can be disabled with

grails.plugin.springsecurity.useSessionFixationPrevention = false

@Secured annotation

As of Grails 2.0, controller actions can be defined as closures or methods, with methods being preferred.
The @Secured annotation no longer supports being defined on controller action closures, so you will need
to convert them to real methods.

You can also specify the HTTP method that an annotation is defined for (e.g. when using REST). When
doing this you must explicitly name the attribute, e.g.value

@Secured(value=[], httpMethod='POST')"hasRole('ROLE_ADMIN')"
def someMethod() {
 …
}

In addition, you can define a closure in the annotation which will be called during access checking. The
closure must return or and has all of the methods and properties that are available whentrue false
using SpEL expressions, since the closure's is set to a subclass of delegate

, and also the Spring as the WebSecurityExpressionRoot ApplicationContext ctx
property:

@Secured(closure = {
 assert request
 assert ctx
 authentication.name == 'admin1'
})
def someMethod() {
 …
}

Anonymous authentication

In standard Spring Security and older versions of the plugin, there is support for an "anonymous"
authentication. This is implemented by a filter that registers a simple in the Authentication

 to remove the need for null checks, since there will always be an SecurityContext
 available. This approach is still problematic though because the Principal of theAuthentication

anonymous authentication is a String, whereas it is a instance when there is aUserDetails
non-anonymous authentication.

9

Since you still have to be careful to differentiate between anonymous and non-anonymous
authentications, the plugin now creates an anonymous which will be an instance of Authentication
grails.plugin.springsecurity.authentication.

 with a standard GrailsAnonymousAuthenticationToken
 instance as its Principal. Theorg.springframework.security.core.userdetails.User

authentication will have a single granted role, .ROLE_ANONYMOUS

No HQL

Some parts of the code used HQL queries, for example in the generated class and in UserRole
. These have been replaced by "where"SpringSecurityService.findRequestmapsByRole

queries to make data access more portable across GORM implementatioins.

Changes in generated classes

The property in the generated class now defaults to . This will make creatingenabled User true
instances a bit more DRY:

def u = User(username: 'me', password: 'itsasecret').save()new

If you prefer the old approach, change your generated class.

Also, the plugin includes the grails.plugin.springsecurity.LoginController.groovy
and controllers, and grails.plugin.springsecurity.LogoutController.groovy

 and GSPs. If you had nograils-app/views/auth.gsp grails-app/views/denied.gsp
need previously to change these you can delete your files and the plugins' files will be used instead. If you
do want to change them, copy each as needed to your application and make the required changes, and
yours will be used instead.

One small change is that there is no longer a default value for the domain class name properties (
, , userLookup.userDomainClassName authority.className requestMap.className

,). This was of little use and tended torememberMe.persistentToken.domainClassName
cause confusing error messages when there was a misconfiguration.

SecurityContextHolder strategy

You can now define the strategy. By default it is stored in a SecurityContextHolder
, but you can also configure it to use an to maintain theThreadLocal InheritableThreadLocal

context in new threads, or a custom class that implements the
org.springframework.security.core.context.SecurityContextHolderStrategy
i n t e r f a c e . T o c h a n g e t h e s t r a t e g y , s e t t h e

 config property to grails.plugin.springsecurity.sch.strategyName
 (the default) to use a , "MODE_THREADLOCAL" ThreadLocal

 to use an , or the name of a"MODE_INHERITABLETHREADLOCAL" InheritableThreadLocal
class that implements .SecurityContextHolderStrategy

Debug filter

10

Y o u c a n e n a b l e a " d e b u g " f i l t e r b a s e d o n t h e
 class. It will log securityorg.springframework.security.config.debug.DebugFilter

information at the "info" level and can help when debugging configuration issues. This should only be
enabled in development mode so consider adding the property that enables it inside an environments
block in Config.groovy

environments {
 development {
 grails.logging.jul.usebridge = true
 grails.plugin.springsecurity.debug.useFilter = true
 }
 production {
 grails.logging.jul.usebridge = false
 }
}

Also add the implementation class name in your Log4j configuration:

info 'grails.plugin.springsecurity.web.filter.DebugFilter'

Storing usernames in the session

In Spring Security 3.0 and earlier, the username was stored in the HTTP session under the key
"SPRING_SECURITY_LAST_USERNAME". This no longer done, but the plugin will use the old
behavior if the setting is set to grails.plugin.springsecurity.apf.storeLastUsername

 (the default is). Further, the name is no longer escaped before storing, it is stored exactlytrue false
as entered by the user, so you must escape it when redisplaying to avoid XSS attacks.

@Authorities annotation

You can use the new @Authorities annotation to make your annotations more DRY. See forthis blog post
a description about the motivation and implementation details. Note that the package for the annotation in
the plugin is , not grails.plugin.springsecurity.annotation

 as described in the blog post.grails.plugins.springsecurity.annotation

Miscellaneous changes

AuthenticationDetailsSource

Previously you could configure the details class that was constructed by the
 bean by setting the authenticationDetailsSource
 property. In Spring Security 3.2 this isn't possible because authenticationDetails.authClass

 always returns a . ButWebAuthenticationDetailsSource WebAuthenticationDetails
you can still customize the details class by creating a class that implements the

 interface, e.g.:AuthenticationDetailsSource

https://burtbeckwith.com/blog/?p=1398
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/AuthenticationDetailsSource.html

11

package com.mycompany;

 javax.servlet.http.HttpServletRequest;import

import
org.springframework.security.authentication.AuthenticationDetailsSource;

 class MyAuthenticationDetailsSource public implements
AuthenticationDetailsSource<HttpServletRequest, MyWebAuthenticationDetails> {

 MyWebAuthenticationDetails buildDetails(HttpServletRequest context) {public
 // build a MyWebAuthenticationDetails
 }
}

and registering that as the bean in authenticationDetailsSource resources.groovy

import com.mycompany.MyAuthenticationDetailsSource

beans = {
 authenticationDetailsSource(MyAuthenticationDetailsSource) {
 // any required properties
 }
}

12

3 Domain Classes
By default the plugin uses regular Grails domain classes to access its required data. It's easy to create your
own user lookup code though, which can access the database or any other source to retrieve user and
authority data. See for how to implement this.Custom UserDetailsService

To use the standard user lookup you'll need at a minimum a 'person' and an 'authority' domain class. In
addition, if you want to store URL<->Role mappings in the database (this is one of multiple approaches
for defining the mappings) you need a 'requestmap' domain class. If you use the recommended approach
for mapping the many-to-many relationship between 'person' and 'authority,' you also need a domain class
to map the join table.

To use the user/group lookup you'll also need a 'group' domain class. If you are using the recommended
approach for mapping many-to-many relationship between 'person' and 'group' and between 'group' and
'authority' you'll need a domain class for each to map the join tables. You can still additionally use
'requestmap' with this approach.

The script creates initial domain classes for you. You specify the package and class names,s2-quickstart
and it creates the corresponding domain classes. After that you can customize them as you like. You can
add unlimited fields, methods, and so on, as long as the core security-related functionality remains.

3.1 Person Class
Spring Security uses an object to determine whether the current user has the right toAuthentication
perform a secured action, such as accessing a URL, manipulating a secured domain object, accessing a
secured method, and so on. This object is created during login. Typically overlap occurs between the need
for authentication data and the need to represent a user in the application in ways that are unrelated to
security. The mechanism for populating the authentication is completely pluggable in Spring Security;
you only need to provide an implementation of and implement its one method, UserDetailsService

.loadUserByUsername()

By default the plugin uses a Grails 'person' domain class to manage this data. , , username enabled
 are the default names of the core required properties. You can easily password plug in your own

, and rename the class, package, and fields. In addition, you should define an implementation
 property to retrieve roles; this can be a public field or a method,authorities getAuthorities()

and it can be defined through a traditional GORM many-to-many or a custom mapping.

Assuming you choose as your package, and as your class name, you'llcom.mycompany.myapp User
generate this class:

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/Authentication.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/userdetails/UserDetailsService.html

13

package com.mycompany.myapp

 groovy.transform.EqualsAndHashCodeimport
 groovy.transform.ToStringimport

@EqualsAndHashCode(includes='username')
@ToString(includes='username', includeNames= , includePackage=)true false
class User Serializable {implements

 serialVersionUID = 1private static final long

 springSecurityServicetransient

 usernameString
 passwordString
 enabled = boolean true
 accountExpiredboolean
 accountLockedboolean
 passwordExpiredboolean

User(username, password) {String String
 ()this
 .username = usernamethis
 .password = passwordthis
 }

Set<Role> getAuthorities() {
 UserRole.findAllByUser()*.rolethis
 }

def beforeInsert() {
 encodePassword()
 }

def beforeUpdate() {
 (isDirty('password')) {if
 encodePassword()
 }
 }

 void encodePassword() {protected
 password = springSecurityService?.passwordEncoder ?
 springSecurityService.encodePassword(password) :
 password
 }

 transients = ['springSecurityService']static

 constraints = {static
 username blank: , unique: false true
 password blank: false
 }

 mapping = {static
 password column: '`password`'
 }
}

Optionally, add other properties such as , , , and convenience methods,email firstName lastName
and so on:

14

package com.mycompany.myapp

 groovy.transform.EqualsAndHashCodeimport
 groovy.transform.ToStringimport

@EqualsAndHashCode(includes='username')
@ToString(includes='username', includeNames= , includePackage=)true false
class User Serializable {implements

 serialVersionUID = 1private static final long

 springSecurityServicetransient

 usernameString
 passwordString
 enabled = boolean true
 emailString
 firstNameString
 lastNameString
 accountExpiredboolean
 accountLockedboolean
 passwordExpiredboolean

User(username, password) {String String
 ()this
 .username = usernamethis
 .password = passwordthis
 }

def someMethod {
 …
 }

Set<Role> getAuthorities() {
 UserRole.findAllByUser()*.rolethis
 }

def beforeInsert() {
 encodePassword()
 }

def beforeUpdate() {
 (isDirty('password')) {if
 encodePassword()
 }
 }

 void encodePassword() {protected
 password = springSecurityService?.passwordEncoder ?
 springSecurityService.encodePassword(password) :
 password
 }

 transients = ['springSecurityService']static

 constraints = {static
 username blank: , unique: false true
 password blank: false
 }

 mapping = {static
 password column: '`password`'
 }
}

The method is analagous to defining getAuthorities() static hasMany =
 in a traditional many-to-many mapping. This way [authorities: Authority]

 can call during login to retrieve the rolesGormUserDetailsService user.authorities
without the overhead of a bidirectional many-to-many mapping.

The class and property names are configurable using these configuration attributes:

15

Property Default Value Meaning

userLookup.userDomainClassName none User class name

userLookup.usernamePropertyName 'username' User class username field

userLookup.passwordPropertyName 'password' User class password field

userLookup.authoritiesPropertyName 'authorities' User class role collection field

userLookup.enabledPropertyName 'enabled' User class enabled field

userLookup.accountExpiredPropertyName 'accountExpired' User class account expired field

userLookup.accountLockedPropertyName 'accountLocked' User class account locked field

userLookup.passwordExpiredPropertyName 'passwordExpired' User class password expired field

userLookup.authorityJoinClassName 'PersonAuthority' User/Role many-many join class name

3.2 Authority Class
The Spring Security plugin also requires an 'authority' class to represent a user's role(s) in the application.
In general this class restricts URLs to users who have been assigned the required access rights. A user can
have multiple roles to indicate various access rights in the application, and should have at least one. A
basic user who can access only non-restricted resources but can still authenticate is a bit unusual. Spring
Security usually functions fine if a user has no granted authorities, but fails in a few places that assume
one or more. So if a user authenticates successfully but has no granted roles, the plugin grants the user a
'virtual' role, . Thus the user satisfies Spring Security's requirements but cannot accessROLE_NO_ROLES
secure resources, as you would not associate any secure resources with this role.

Like the 'person' class, the 'authority' class has a default name, , and a default name for itsAuthority
one required property, . If you want to use another existing domain class, it simply has toauthority
have a property for name. As with the name of the class, the names of the properties can be whatever you
want - they're specified in .grails-app/conf/Config.groovy

Assuming you choose as your package, and as your class name, you'llcom.mycompany.myapp Role
generate this class:

16

package com.mycompany.myapp

 groovy.transform.EqualsAndHashCodeimport
 groovy.transform.ToStringimport

@EqualsAndHashCode(includes='authority')
@ToString(includes='authority', includeNames= , includePackage=)true false
class Role Serializable {implements

 serialVersionUID = 1private static final long

 authorityString

Role(authority) {String
 ()this
 .authority = authoritythis
 }

 constraints = {static
 authority blank: , unique: false true
 }

 mapping = {static
 cache true
 }
}

The class and property names are configurable using these configuration attributes:

Property Default Value Meaning

authority.className none Role class name

authority.nameField 'authority' Role class role name field

Role names must start with "ROLE_". This is configurable in Spring Security, but
not in the plugin. It would be possible to allow different prefixes, but it's important
that the prefix not be blank as the prefix is used to differentiate between role names
and tokens such as IS_AUTHENTICATED_FULLY,
IS_AUTHENTICATED_ANONYMOUSLY, etc., and SpEL expressions.

The role names should be primarily an internal implementation detail; if you want to
display friendlier names in a UI, it's simple to remove the prefix first.

3.3 PersonAuthority Class
The typical approach to mapping the relationship between 'person' and 'authority' is a many-to-many.
Users have multiple roles, and roles are shared by multiple users. This approach can be problematic in
Grails, because a popular role, for example, , will be granted to many users in yourROLE_USER
application. GORM uses collections to manage adding and removing related instances and maps
many-to-many relationships bidirectionally. Granting a role to a user requires loading all existing users
who have that role because the collection is a . So even though no uniqueness concerns may exist,Set
Hibernate loads them all to enforce uniqueness. The recommended approach in the plugin is to map a
domain class to the join table that manages the many-to-many, and using that to grant and revoke roles to
users.

Like the other domain classes, this class is generated for you, so you don't need to deal with the details of
mapping it. Assuming you choose as your package, and and ascom.mycompany.myapp User Role
your class names, you'll generate this class:

17

package com.mycompany.myapp

 grails.gorm.DetachedCriteriaimport
 groovy.transform.ToStringimport

 org.apache.commons.lang.builder.HashCodeBuilderimport

@ToString(cache= , includeNames= , includePackage=)true true false
class UserRole Serializable {implements

 serialVersionUID = 1private static final long

User user
 Role role

UserRole(User u, Role r) {
 ()this
 user = u
 role = r
 }

@Override
 equals(other) {boolean
 (!(other UserRole)) {if instanceof
 return false
 }

other.user?.id == user?.id &&
 other.role?.id == role?.id
 }

@Override
 hashCode() {int
 def builder = HashCodeBuilder()new
 (user) builder.append(user.id)if
 (role) builder.append(role.id)if
 builder.toHashCode()
 }

 UserRole get(userId, roleId) {static long long
 criteriaFor(userId, roleId).get()
 }

 exists(userId, roleId) {static boolean long long
 criteriaFor(userId, roleId).count()
 }

 DetachedCriteria criteriaFor(userId, roleId) {private static long long
 UserRole.where {
 user == User.load(userId) &&
 role == Role.load(roleId)
 }
 }

 UserRole create(User user, Role role, flush =) {static boolean false
 def instance = UserRole(user: user, role: role)new
 instance.save(flush: flush, insert:)true
 instance
 }

 remove(User u, Role r, flush =) {static boolean boolean false
 (u == || r ==) if null null return false

 rowCount = UserRole.where { user == u && role == r }.deleteAll()int

 (flush) { UserRole.withSession { it.flush() } }if

rowCount
 }

 void removeAll(User u, flush =) {static boolean false
 (u ==) if null return

UserRole.where { user == u }.deleteAll()

 (flush) { UserRole.withSession { it.flush() } }if
 }

18

 void removeAll(Role r, flush =) {static boolean false
 (r ==) if null return

UserRole.where { role == r }.deleteAll()

 (flush) { UserRole.withSession { it.flush() } }if
 }

 constraints = {static
 role validator: { Role r, UserRole ur ->
 (ur.user == || ur.user.id ==) if null null return
 existing = boolean false
 UserRole.withNewSession {
 existing = UserRole.exists(ur.user.id, r.id)
 }
 (existing) {if
 'userRole.exists'return
 }
 }
 }

 mapping = {static
 id composite: ['user', 'role']
 version false
 }
}

The helper methods make it easy to grant or revoke roles. Assuming you have already loaded a user and a
role, you grant the role to the user as follows:

User user = …
Role role = …
UserRole.create user, role

Or by using the 3-parameter version to trigger a flush:

User user = …
Role role = …
UserRole.create user, role, true

Revoking a role is similar:

User user = …
Role role = …
UserRole.remove user, role

Or:

User user = …
Role role = …
UserRole.remove user, role, true

The class name is the only configurable attribute:

19

Property Default Value Meaning

userLookup.authorityJoinClassName 'PersonAuthority' User/Role many-many join class name

3.4 Group Class
This Spring Security plugin provides you the option of creating an access inheritance level between
'person' and 'authority': the 'group'. The next three classes you will read about (including this one) are only
used in a 'person'/'group'/'authority' implementation. Rather than giving a 'person' authorities directly, you
can create a 'group', map authorities to it, and then map a 'person' to that 'group'. For applications that
have a one or more groups of users who need the same level of access, having one or more 'group'
instances makes managing changes to access levels easier because the authorities that make up that access
level are encapsulated in the 'group', and a single change will affect all of the users.

If you run the script with the group name specified and use ass2-quickstart com.mycompany.myapp
your package and and as your class names, you'll generate this class:RoleGroup Role

package com.mycompany.myapp

 groovy.transform.EqualsAndHashCodeimport
 groovy.transform.ToStringimport

@EqualsAndHashCode(includes='name')
@ToString(includes='name', includeNames= , includePackage=)true false
class RoleGroup Serializable {implements

 serialVersionUID = 1private static final long

 nameString

RoleGroup(name) {String
 ()this
 .name = namethis
 }

Set<Role> getAuthorities() {
 RoleGroupRole.findAllByRoleGroup()*.rolethis
 }

 constraints = {static
 name blank: , unique: false true
 }

 mapping = {static
 cache true
 }
}

When running the script with the group name specified, the 'person' class will be generateds2-quickstart
differently to accommodate the use of groups. Assuming you use as yourcom.mycompany.myapp
package and and as your class names, the method will beUser RoleGroup getAuthorities()
generated like so:

Set<RoleGroup> getAuthorities() {
 UserRoleGroup.findAllByUser().collect { it.roleGroup }this
}

20

The plugin assumes the attribute will provide the 'authority' collection for each class, butauthorities
you can change the field names in . You also must ensure thatgrails-app/conf/Config.groovy
the property is set to in order for to properlyuseRoleGroups true GormUserDetailsService
attain the .authorities

Property
Default
Value

Assigned Value Using
s2QuickstartGroups

Meaning

useRoleGroups false true
Use 'authority group' implementation
when loading user authorities

a u t h o r i t y .
groupAuthorityNameField

null 'authorities'
AuthorityGroup class role collection
field

3.5 PersonGroup Class
The typical approach to mapping the relationship between 'person' and 'group' is a many-to-many. In a
standard implementation, users have multiple roles, and roles are shared by multiple users. In a group
implementation, users have multiple groups, and groups are shared by multiple users. For the same reason
we would use a join class between 'person' and 'authority', we should use one between 'person' and
'group'. Please note that when using groups, there should not be a join class between 'person' and
'authority', since 'group' resides between the two.

If you run the script with the group name specified, this class will be generated for you, sos2-quickstart
you don't need to deal with the details of mapping it. Assuming you choose com.mycompany.myapp
as your package, and and as your class names, you'll generate this class:User RoleGroup

package com.mycompany.myapp

 grails.gorm.DetachedCriteriaimport
 groovy.transform.ToStringimport

 org.apache.commons.lang.builder.HashCodeBuilderimport

@ToString(cache= , includeNames= , includePackage=)true true false
class UserRoleGroup Serializable {implements

 serialVersionUID = 1private static final long

User user
 RoleGroup roleGroup

UserRoleGroup(User u, RoleGroup rg) {
 ()this
 user = u
 roleGroup = rg
 }

@Override
 equals(other) {boolean
 (!(other UserRoleGroup)) {if instanceof
 return false
 }

other.user?.id == user?.id &&
 other.roleGroup?.id == roleGroup?.id
 }

@Override
 hashCode() {int
 def builder = HashCodeBuilder()new
 (user) builder.append(user.id)if
 (roleGroup) builder.append(roleGroup.id)if
 builder.toHashCode()
 }

21

 UserRoleGroup get(userId, roleGroupId) {static long long
 criteriaFor(userId, roleGroupId).get()
 }

 exists(userId, roleGroupId) {static boolean long long
 criteriaFor(userId, roleGroupId).count()
 }

 DetachedCriteria criteriaFor(userId, roleGroupId) {private static long long
 UserRoleGroup.where {
 user == User.load(userId) &&
 roleGroup == RoleGroup.load(roleGroupId)
 }
 }

 UserRoleGroup create(User user, RoleGroup roleGroup,static
 flush =) {boolean false
 def instance = UserRoleGroup(user: user, roleGroup: roleGroup)new
 instance.save(flush: flush, insert:)true
 instance
 }

 remove(User u, RoleGroup rg, flush =) {static boolean boolean false
 (u == || rg ==) if null null return false

 rowCount = UserRoleGroup.where { user == u && roleGroup == rgint
}.deleteAll()

 (flush) { UserRoleGroup.withSession { it.flush() } }if

rowCount
 }

 void removeAll(User u, flush =) {static boolean false
 (u ==) if null return

UserRoleGroup.where { user == u }.deleteAll()

 (flush) { UserRoleGroup.withSession { it.flush() } }if
 }

 void removeAll(RoleGroup rg, flush =) {static boolean false
 (rg ==) if null return

UserRoleGroup.where { roleGroup == rg }.deleteAll()

 (flush) { UserRoleGroup.withSession { it.flush() } }if
 }

 constraints = {static
 user validator: { User u, UserRoleGroup ug ->
 (ug.roleGroup == || ug.roleGroup.id ==) if null null return
 existing = boolean false
 UserRoleGroup.withNewSession {
 existing = UserRoleGroup.exists(u.id, ug.roleGroup.id)
 }
 (existing) {if
 'userGroup.exists'return
 }
 }
 }

 mapping = {static
 id composite: ['roleGroup', 'user']
 version false
 }
}

3.6 GroupAuthority Class

22

The typical approach to mapping the relationship between 'group' and 'authority' is a many-to-many. In a
standard implementation, users have multiple roles, and roles are shared by multiple users. In a group
implementation, groups have multiple roles and roles are shared by multiple groups. For the same reason
we would use a join class between 'person' and 'authority', we should use one between 'group' and
'authority'.

If you run the script with the group name specified, this class will be generated for you, sos2-quickstart
you don't need to deal with the details of mapping it. Assuming you choose com.mycompany.myapp
as your package, and and as your class names, you'll generate this class:RoleGroup Role

package com.mycompany.myapp

 grails.gorm.DetachedCriteriaimport
 groovy.transform.ToStringimport

 org.apache.commons.lang.builder.HashCodeBuilderimport

@ToString(cache= , includeNames= , includePackage=)true true false
class RoleGroupRole Serializable {implements

 serialVersionUID = 1private static final long

RoleGroup roleGroup
 Role role

RoleGroupRole(RoleGroup g, Role r) {
 ()this
 roleGroup = g
 role = r
 }

@Override
 equals(other) {boolean
 (!(other RoleGroupRole)) {if instanceof
 return false
 }

other.role?.id == role?.id &&
 other.roleGroup?.id == roleGroup?.id
 }

@Override
 hashCode() {int
 def builder = HashCodeBuilder()new
 (roleGroup) builder.append(roleGroup.id)if
 (role) builder.append(role.id)if
 builder.toHashCode()
 }

 RoleGroupRole get(roleGroupId, roleId) {static long long
 criteriaFor(roleGroupId, roleId).get()
 }

 exists(roleGroupId, roleId) {static boolean long long
 criteriaFor(roleGroupId, roleId).count()
 }

 DetachedCriteria criteriaFor(roleGroupId, roleId) {private static long long
 RoleGroupRole.where {
 roleGroup == RoleGroup.load(roleGroupId) &&
 role == Role.load(roleId)
 }
 }

 RoleGroupRole create(RoleGroup roleGroup, Role role,static
 flush =) {boolean false
 def instance = RoleGroupRole(roleGroup: roleGroup, role: role)new
 instance.save(flush: flush, insert:)true
 instance
 }

 remove(RoleGroup rg, Role r, flush =) {static boolean boolean false
 (rg == || r ==) if null null return false

23

 rowCount = RoleGroupRole.where { roleGroup == rg && role == rint
}.deleteAll()

 (flush) { RoleGroupRole.withSession { it.flush() } }if

rowCount
 }

 void removeAll(Role r, flush =) {static boolean false
 (r ==) if null return

RoleGroupRole.where { role == r }.deleteAll()

 (flush) { RoleGroupRole.withSession { it.flush() } }if
 }

 void removeAll(RoleGroup rg, flush =) {static boolean false
 (rg ==) if null return

RoleGroupRole.where { roleGroup == rg }.deleteAll()

 (flush) { RoleGroupRole.withSession { it.flush() } }if
 }

 constraints = {static
 role validator: { Role r, RoleGroupRole rg ->
 (rg.roleGroup == || rg.roleGroup.id ==) if null null return
 existing = boolean false
 RoleGroupRole.withNewSession {
 existing = RoleGroupRole.exists(rg.roleGroup.id, r.id)
 }
 (existing) {if
 'roleGroup.exists'return
 }
 }
 }

 mapping = {static
 id composite: ['roleGroup', 'role']
 version false
 }
}

3.7 Requestmap Class
Optionally, use this class to store request mapping entries in the database instead of defining them with
annotations or in . This option makes the class configurable at runtime; you can add,Config.groovy
remove and edit rules without restarting your application.

Property Default Value Meaning

requestMap.className none requestmap class name

requestMap.urlField 'url' URL pattern field name

requestMap.
configAttributeField

'configAttribute' authority pattern field name

requestMap.
httpMethodField

'httpMethod'
HTTP method field name (optional, does not have to exist in
the class if you don't require URL/method security)

Assuming you choose as your package, and as your classcom.mycompany.myapp Requestmap
name, you'll generate this class:

24

package com.mycompany.myapp

 org.springframework.http.HttpMethodimport

 groovy.transform.EqualsAndHashCodeimport
 groovy.transform.ToStringimport

@EqualsAndHashCode(includes=['configAttribute', 'httpMethod', 'url'])
@ToString(includes=['configAttribute', 'httpMethod', 'url'], cache= ,true
includeNames= , includePackage=)true false
class Requestmap Serializable {implements

 serialVersionUID = 1private static final long

 configAttributeString
 HttpMethod httpMethod
 urlString

Requestmap(url, configAttribute,String String
 HttpMethod httpMethod =) {null
 ()this
 .configAttribute = configAttributethis
 .httpMethod = httpMethodthis
 .url = urlthis
 }

 constraints = {static
 configAttribute blank: false
 httpMethod nullable: true
 url blank: , unique: 'httpMethod'false
 }

 mapping = {static
 cache true
 }
}

To use Requestmap entries to guard URLs, see .Requestmap Instances Stored in the Database

25

4 Configuring Request Mappings to Secure URLs
You can choose among the following approaches to configuring request mappings for secure application
URLs. The goal is to map URL patterns to the roles required to access those URLs.

 annotations (default approach)@Secured

A simple Map in Config.groovy

 domain class instances stored in the databaseRequestmap

You can only use one method at a time. You configure it with the attribute;securityConfigType
the value has to be an enum value or the name of the enum as a String.SecurityConfigType

Pessimistic Lockdown

Many applications are mostly public, with some pages only accessible to authenticated users with various
roles. In this case, it might make sense to leave URLs open by default and restrict access on a
case-by-case basis. However, if your application is primarily secure, you can use a pessimistic lockdown
approach to deny access to all URLs that do not have an applicable URL-Role request mapping. But the
pessimistic approach is safer; if you forget to restrict access to a URL using the optimistic approach, it
might take a while to discover that unauthorized users can access the URL, but if you forget to allow
access when using the pessimistic approach, no user can access it and the error should be quickly
discovered.

The pessimistic approach is the default, and there are two configuration options that apply. If
 is (the default) then any URL that has no request mappings (an annotation,rejectIfNoRule true

entry in or , or a controllerAnnotations.staticRules interceptUrlMap Requestmap
instance) will be denied to all users. The other option is and if itfii.rejectPublicInvocations
is (the default) then un-mapped URLs will trigger an and willtrue IllegalArgumentException
show the error page. This is uglier, but more useful because it's very clear that there is a misconfiguration.
When is but is you just seefii.rejectPublicInvocations false rejectIfNoRule true
the "Sorry, you're not authorized to view this page." error 403 message.

Note that the two settings are mutually exclusive. If is then rejectIfNoRule true
 is ignored because the request will transition to the login page orfii.rejectPublicInvocations

the error 403 page. If you want the more obvious error page, set fii.rejectPublicInvocations
to and to to allow that check to occur.true rejectIfNoRule false

To reject un-mapped URLs with a 403 error code, use these settings (or none since rejectIfNoRule
defaults to)true

grails.plugin.springsecurity.rejectIfNoRule = true
grails.plugin.springsecurity.fii.rejectPublicInvocations = false

and to reject with the error 500 page, use these (optionally omit since itrejectPublicInvocations
defaults to):true

grails.plugin.springsecurity.rejectIfNoRule = false
grails.plugin.springsecurity.fii.rejectPublicInvocations = true

26

Note that if you set or to you'll need torejectIfNoRule rejectPublicInvocations true
configure the map to include URLs that can't otherwise be guarded:staticRules

grails.plugin.springsecurity.controllerAnnotations.staticRules = [
 '/': ['permitAll'],
 '/index': ['permitAll'],
 '/index.gsp': ['permitAll'],
 '/assets/**': ['permitAll'],
 '/**/js/**': ['permitAll'],
 '/**/css/**': ['permitAll'],
 '/**/images/**': ['permitAll'],
 '/**/favicon.ico': ['permitAll']
]

This is needed when using annotat ions; i f you use the
 map in you'll needgrails.plugin.springsecurity.interceptUrlMap Config.groovy

to add these URLs too, and likewise when using instances. If you don't use annotations,Requestmap
you must add rules for the login and logout controllers also. You can add Requestmaps manually, or in
BootStrap.groovy, for example:

for (url in [String
 '/', '/index', '/index.gsp', '/**/favicon.ico',
 '/**/js/**', '/**/css/**', '/**/images/**',
 '/login', '/login.*', '/login/*',
 '/logout', '/logout.*', '/logout/*']) {
 Requestmap(url: url, configAttribute: 'permitAll').save()new
}

The analogous interceptUrlMap settings would be:

grails.plugin.springsecurity.interceptUrlMap = [
 '/': ['permitAll'],
 '/index': ['permitAll'],
 '/index.gsp': ['permitAll'],
 '/assets/**': ['permitAll'],
 '/**/js/**': ['permitAll'],
 '/**/css/**': ['permitAll'],
 '/**/images/**': ['permitAll'],
 '/**/favicon.ico': ['permitAll'],
 '/login/**': ['permitAll'],
 '/logout/**': ['permitAll']
]

In addition, when you enable the switch-user feature, you'll have to specify access rules for the associated
URLs, e.g.

'/j_spring_security_switch_user': ['ROLE_ADMIN'],
'/j_spring_security_exit_user': ['permitAll']

URLs and Authorities

27

In each approach you configure a mapping for a URL pattern to the role(s) that are required to access
those URLs, for example, requires . In addition, you can combine the/admin/user/** ROLE_ADMIN
role(s) with tokens such as IS_AUTHENTICATED_ANONYMOUSLY,
IS_AUTHENTICATED_REMEMBERED, and IS_AUTHENTICATED_FULLY. One or more sVoter
will process any tokens and enforce a rule based on them:

IS_AUTHENTICATED_ANONYMOUSLY

signifies that anyone can access this URL. By default the
 ensures an 'anonymous' withAnonymousAuthenticationFilter Authentication

no roles so that every user has an authentication. The token accepts any authentication, even
anonymous.

IS_AUTHENTICATED_REMEMBERED

requires the user to be authenticated through a remember-me cookie or an explicit login.

IS_AUTHENTICATED_FULLY

requires the user to be fully authenticated with an explicit login.

With you can implement a security scheme whereby users can check aIS_AUTHENTICATED_FULLY
remember-me checkbox during login and be auto-authenticated each time they return to your site, but
must still log in with a password for some parts of the site. For example, allow regular browsing and
adding items to a shopping cart with only a cookie, but require an explicit login to check out or view
purchase history.

For more information on , , and IS_AUTHENTICATED_FULLY IS_AUTHENTICATED_REMEMBERED
, see the Javadoc for IS_AUTHENTICATED_ANONYMOUSLY AuthenticatedVoter

The plugin isn't compatible with Grails tags. These are used<g:actionSubmit>
in the autogenerated GSPs that are created for you, and they enable having multiple
submit buttons, each with its own action, inside a single form. The problem from the
security perspective is that the form posts to the default action of the controller, and
Grails figures out the handler action to use based on the attribute of the action

 tag. So for example you can guard the with aactionSubmit /person/delete
restrictive role, but given this typical edit form:

<g:form>
 …
 <g:actionSubmit class= action="save" "update"
 value='Update' />

<g:actionSubmit class= action="delete" "delete"
 value="'Delete' />
</g:form>

both actions will be allowed if the user has permission to access the
 url, which would often be the case./person/index

The workaround is to create separate forms without using andactionSubmit
explicitly set the on the tags, which will result in formaction <g:form>
submissions to the expected urls and properly guarded urls.

Comparing the Approaches

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/access/vote/AuthenticatedVoter.html

28

Each approach has its advantages and disadvantages. Annotations and the Map areConfig.groovy
less flexible because they are configured once in the code and you can update them only by restarting the
application (in prod mode anyway). In practice this limitation is minor, because security mappings for
most applications are unlikely to change at runtime.

On the other hand, storing entries enables runtime-configurability. This approach givesRequestmap
you a core set of rules populated at application startup that you can edit, add to, and delete as needed.
However, it separates the security rules from the application code, which is less convenient than having
the rules defined in or in the applicable controllers usinggrails-app/conf/Config.groovy
annotations.

URLs must be mapped in lowercase if you use the or Requestmap
 map approaches. For example, if you have agrails-app/conf/Config.groovy

FooBarController, its urls will be of the form /fooBar/list, /fooBar/create, and so on, but these must be
mapped as /foobar/, /foobar/list, /foobar/create. This mapping is handled automatically for you if you use
annotations.

4.1 Defining Secured Annotations
You can use an annotation (either the standard @Secured

 or the plugin's org.springframework.security.access.annotation.Secured
 which also works on controllergrails.plugin.springsecurity.annotation.Secured

closure actions) in your controllers to configure which roles are required for which actions. To use
annotations, specify , or leave it unspecified because it's thesecurityConfigType="Annotation"
default:

grails.plugin.springsecurity.securityConfigType = "Annotation"

You can define the annotation at the class level, meaning that the specified roles are required for all
actions, or at the action level, or both. If the class and an action are annotated then the action annotation
values will be used since they're more specific.

For example, given this controller:

package com.mycompany.myapp

 grails.plugin.springsecurity.annotation.Securedimport

class SecureAnnotatedController {

@Secured(['ROLE_ADMIN'])
 def index() {
 render 'you have ROLE_ADMIN'
 }

@Secured(['ROLE_ADMIN', 'ROLE_SUPERUSER'])
 def adminEither() {
 render 'you have ROLE_ADMIN or SUPERUSER'
 }

def anybody() {
 render 'anyone can see ' // assuming you're not using mode,this "strict"
otherwise the action is not viewable by anyone
 }
}

29

you must be authenticated and have to see (or ROLE_ADMIN /myapp/secureAnnotated
) and be authenticated and have or /myapp/secureAnnotated/index ROLE_ADMIN

 to see . Any user can access ROLE_SUPERUSER /myapp/secureAnnotated/adminEither
 if you have disabled "strict" mode (using /myapp/secureAnnotated/anybody

), and nobody can access the action by default since it has no access rule configured.rejectIfNoRule

In addition, you can define a closure in the annotation which will be called during access checking. The
closure must return or and has all of the methods and properties that are available whentrue false
using SpEL expressions, since the closure's is set to a subclass of delegate

, and also the Spring as the WebSecurityExpressionRoot ApplicationContext ctx
property:

@Secured(closure = {
 assert request
 assert ctx
 authentication.name == 'admin1'
})
def someMethod() {
 …
}

Often most actions in a controller require similar access rules, so you can also define annotations at the
class level:

package com.mycompany.myapp

 grails.plugin.springsecurity.annotation.Securedimport

@Secured(['ROLE_ADMIN'])
class SecureClassAnnotatedController {

def index() {
 render 'index: you have ROLE_ADMIN'
 }

def otherAction() {
 render 'otherAction: you have ROLE_ADMIN'
 }

@Secured(['ROLE_SUPERUSER'])
 def () {super
 render ' : you have ROLE_SUPERUSER'super
 }
}

Here you need to be authenticated and have to see ROLE_ADMIN
 (or) or /myapp/secureClassAnnotated /myapp/secureClassAnnotated/index

. However, you must have /myapp/secureClassAnnotated/otherAction ROLE_SUPERUSER
to access . The action-scope annotation overrides the/myapp/secureClassAnnotated/super
class-scope annotation. Note that "strict" mode isn't applicable here since all actions have an access rule
defined (either explicitly or inherited from the class-level annotation).

Securing RESTful domain classes

Since Grails 2.3, domain classes can be annotated with the ASTgrails.rest.Resource
transformation, which will generate internally a controller with the default CRUD operations.

30

You can also use the annotation on such domain classes:@Secured

@Resource
@Secured('ROLE_ADMIN')
class Thing {
 nameString
}

Additionally, you can specify the HTTP method that is required in each annotation for the access rule,
e.g.

package com.mycompany.myapp

 grails.plugin.springsecurity.annotation.Securedimport

class SecureAnnotatedController {

@Secured(value = ['ROLE_ADMIN'], httpMethod = 'GET')
 def create() {
 …
 }

@Secured(value = ['ROLE_ADMIN'], httpMethod = 'POST')
 def save() {
 …
 }
}

Here you must have ROLE_ADMIN for both the and actions but requires acreate save create
GET request (since it renders the form to create a new instance) and requires POST (since it's thesave
action that the form posts to).

controllerAnnotations.staticRules

You can also define 'static' mappings that cannot be expressed in the controllers, such as '/**' or for
JavaScript, CSS, or image URLs. Use the property, forcontrollerAnnotations.staticRules
example:

grails.plugin.springsecurity.controllerAnnotations.staticRules = [
 …
 '/js/admin/**': ['ROLE_ADMIN'],
 '/someplugin/**': ['ROLE_ADMIN']
]

This example maps all URLs associated with , which has URLs of the form SomePluginController
, to ; annotations are not an option here because you would not edit/somePlugin/... ROLE_ADMIN

plugin code for a change like this.

31

When mapping URLs for controllers that are mapped in ,UrlMappings.groovy
you need to secure the un-url-mapped URLs. For example if you have a
FooBarController that you map to , you must register that in /foo/bar/$action

 as . This is differentcontrollerAnnotations.staticRules /foobar/**
than the mapping you would use for the other two approaches and is necessary
because entries are treated as ifcontrollerAnnotations.staticRules
they were annotations on the corresponding controller.

4.2 Simple Map in Config.groovy
To use the Map to secure URLs, first specify Config.groovy

:securityConfigType="InterceptUrlMap"

grails.plugin.springsecurity.securityConfigType = "InterceptUrlMap"

Define a Map in :Config.groovy

grails.plugin.springsecurity.interceptUrlMap = [
 '/': ['permitAll'],
 '/index': ['permitAll'],
 '/index.gsp': ['permitAll'],
 '/assets/**': ['permitAll'],
 '/**/js/**': ['permitAll'],
 '/**/css/**': ['permitAll'],
 '/**/images/**': ['permitAll'],
 '/**/favicon.ico': ['permitAll'],
 '/login/**': ['permitAll'],
 '/logout/**': ['permitAll'],
 '/secure/**': ['ROLE_ADMIN'],
 '/finance/**': ['ROLE_FINANCE', 'isFullyAuthenticated()'],
]

When using this approach, make sure that you order the rules correctly. The first applicable rule is used,
so for example if you have a controller that has one set of rules but an action that has stricter access rules,
e.g.

'/secure/**': ['ROLE_ADMIN', 'ROLE_SUPERUSER'],
'/secure/reallysecure/**': ['ROLE_SUPERUSER']

then this would fail - it wouldn't restrict access to to a user with /secure/reallysecure/list
 since the first URL pattern matches, so the second would be ignored. The correctROLE_SUPERUSER

mapping would be

'/secure/reallysecure/**': ['ROLE_SUPERUSER']
'/secure/**': ['ROLE_ADMIN', 'ROLE_SUPERUSER'],

4.3 Requestmap Instances Stored in the Database

32

With this approach you use the domain class to store mapping entries in the database. Requestmap
 has a property that contains the secured URL pattern and a Requestmap url configAttribute

property containing a comma-delimited list of required roles and/or tokens such as
, , and IS_AUTHENTICATED_FULLY IS_AUTHENTICATED_REMEMBERED

.IS_AUTHENTICATED_ANONYMOUSLY

To use entries, specify :Requestmap securityConfigType="Requestmap"

grails.plugin.springsecurity.securityConfigType = "Requestmap"

You create entries as you create entries in any Grails domain class:Requestmap

for (url in [String
 '/', '/index', '/index.gsp', '/**/favicon.ico',
 '/assets/**', '/**/js/**', '/**/css/**', '/**/images/**',
 '/login', '/login.*', '/login/*',
 '/logout', '/logout.*', '/logout/*']) {
 Requestmap(url: url, configAttribute: 'permitAll').save()new
}

 Requestmap(url: '/profile/**', configAttribute: 'ROLE_USER').save()new
 Requestmap(url: '/admin/**', configAttribute: 'ROLE_ADMIN').save()new
 Requestmap(url: '/admin/role/**', configAttribute:new

'ROLE_SUPERVISOR').save()
 Requestmap(url: '/admin/user/**', configAttribute:new

'ROLE_ADMIN,ROLE_SUPERVISOR').save()
 Requestmap(url: '/j_spring_security_switch_user',new

 configAttribute:
'ROLE_SWITCH_USER,isFullyAuthenticated()').save()

The value can have a single value or have multiple comma-delimited values. InconfigAttribute
this example only users with or can access ROLE_ADMIN ROLE_SUPERVISOR /admin/user/**
urls, and only users with can access the switch-user url (ROLE_SWITCH_USER

) and in addition must be authenticated fully, i.e. not using a/j_spring_security_switch_user
remember-me cookie. Note that when specifying multiple roles, the user must have at least one of them,
but when combining , , or IS_AUTHENTICATED_FULLY IS_AUTHENTICATED_REMEMBERED

 (or their corresponding SpEL expressions) with one or moreIS_AUTHENTICATED_ANONYMOUSLY
roles means the user must have one of the roles and satisty the rule.IS_AUTHENTICATED

Unlike the , you do not need to revise the entry orderConfig.groovy Map approach Requestmap
because the plugin calculates the most specific rule that applies to the current request.

Requestmap Cache

 entries are cached for performance, but caching affects runtime configurability. If youRequestmap
create, edit, or delete an instance, the cache must be flushed and repopulated to be consistent with the
database. You can call to do this.springSecurityService.clearCachedRequestmaps()
For example, if you create a the action should look like this (and theRequestmapController save
update and delete actions should similarly call):clearCachedRequestmaps()

33

class RequestmapController {

def springSecurityService

...

def save() {
 def requestmapInstance = Requestmap(params)new
 (!requestmapInstance.save(flush:)) {if true
 render view: 'create', model: [requestmapInstance:
requestmapInstance]
 return
 }

springSecurityService.clearCachedRequestmaps()

flash.message = "${message(code: ' .created.message', args:default
[message(code: 'requestmap.label', : 'Requestmap'),default
requestmapInstance.id])}"
 redirect action: 'show', id: requestmapInstance.id
 }
}

4.4 Using Expressions to Create Descriptive, Fine-Grained Rules
Spring Security uses the , which allows you to declare the rules forSpring Expression Language (SpEL)
guarding URLs more descriptively than does the traditional approach, and also allows much more
fine-grained rules. Where you traditionally would specify a list of role names and/or special tokens (for
example,), with , you can insteadIS_AUTHENTICATED_FULLY Spring Security's expression support
use the embedded scripting language to define simple or complex access rules.

You can use expressions with any of the previously described approaches to securing application URLs.
For example, consider this annotated controller:

package com.yourcompany.yourapp

 grails.plugin.springsecurity.annotation.Securedimport

class SecureController {

@Secured([])"hasRole('ROLE_ADMIN')"
 def someAction() {
 …
 }

@Secured([])"authentication.name == 'ralph'"
 def someOtherAction() {
 …
 }
}

In this example, requires , and requires that the usersomeAction ROLE_ADMIN someOtherAction
be logged in with username 'ralph'.

The corresponding URLs would beRequestmap

new Requestmap(url: ,"/secure/someAction"
 configAttribute:).save()"hasRole('ROLE_ADMIN')"

 Requestmap(url: ,new "/secure/someOtherAction"
 configAttribute:).save()"authentication.name == 'ralph'"

https://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring-security/site/docs/3.2.x/reference/htmlsingle/#el-access

34

and the corresponding static mappings would be

grails.plugin.springsecurity.interceptUrlMap = [
 '/secure/someAction': [],"hasRole('ROLE_ADMIN')"
 '/secure/someOtherAction': []"authentication.name == 'ralph'"
]

The Spring Security docs have a , which is copied here for reference:table listing the standard expressions

Expression Description

hasRole(role) Returns true if the current principal has the specified role.

hasAnyRole([role1,role2])
Returns true if the current principal has any of the supplied roles
(given as a comma-separated list of strings)

principal
Allows direct access to the principal object representing the
current user

authentication
Allows direct access to the current Authentication object obtained
from the SecurityContext

permitAll Always evaluates to true

denyAll Always evaluates to false

isAnonymous() Returns true if the current principal is an anonymous user

isRememberMe() Returns true if the current principal is a remember-me user

isAuthenticated() Returns true if the user is not anonymous

isFullyAuthenticated()
Returns true if the user is not an anonymous or a remember-me
user

request
the HTTP request, allowing expressions such as
" i s F u l l y A u t h e n t i c a t e d () o r
request.getMethod().equals('OPTIONS')"

In addition, you can use a web-specific expression . However, you may find it morehasIpAddress
convenient to separate IP restrictions from role restrictions by using the .IP address filter

To help you migrate traditional configurations to expressions, this table compares various configurations
and their corresponding expressions:

Traditional Config Expression

ROLE_ADMIN hasRole('ROLE_ADMIN')

ROLE_USER,ROLE_ADMIN hasAnyRole('ROLE_USER','ROLE_ADMIN')

ROLE_ADMIN,IS_AUTHENTICATED_FULLY
hasRole('ROLE_ADMIN') and
isFullyAuthenticated()

IS_AUTHENTICATED_ANONYMOUSLY permitAll

IS_AUTHENTICATED_REMEMBERED isAuthenticated() or isRememberMe()

IS_AUTHENTICATED_FULLY isFullyAuthenticated()

https://docs.spring.io/spring-security/site/docs/3.2.x/reference/htmlsingle/#el-common-built-in

35

5 Helper Classes
Use the plugin helper classes in your application to avoid dealing with some lower-level details of Spring
Security.

5.1 SecurityTagLib
The plugin includes GSP tags to support conditional display based on whether the user is authenticated,
and/or has the required role to perform a particular action. These tags are in the namespace and aresec
implemented in .grails.plugin.springsecurity.SecurityTagLib

ifLoggedIn

Displays the inner body content if the user is authenticated.

Example:

<sec:ifLoggedIn>
Welcome Back!
</sec:ifLoggedIn>

ifNotLoggedIn

Displays the inner body content if the user is not authenticated.

Example:

<sec:ifNotLoggedIn>
<g:link controller='login' action='auth'>Login</g:link>
</sec:ifNotLoggedIn>

ifAllGranted

Displays the inner body content only if all of the listed roles are granted.

Example:

<sec:ifAllGranted roles= >secure stuff"ROLE_ADMIN,ROLE_SUPERVISOR"
here</sec:ifAllGranted>

ifAnyGranted

Displays the inner body content if at least one of the listed roles are granted.

Example:

<sec:ifAnyGranted roles= >secure stuff"ROLE_ADMIN,ROLE_SUPERVISOR"
here</sec:ifAnyGranted>

36

ifNotGranted

Displays the inner body content if none of the listed roles are granted.

Example:

<sec:ifNotGranted roles= >non-user stuff here</sec:ifNotGranted>"ROLE_USER"

loggedInUserInfo

Displays the value of the specified UserDetails field if logged in. For example, to show the username
property:

<sec:loggedInUserInfo field= />"username"

If you have customized the UserDetails (e.g. with a custom UserDetailsService) to add a fullName
property, you access it as follows:

Welcome Back <sec:loggedInUserInfo field= />"fullName"

username

Displays the value of the UserDetails field if logged in.username

<sec:ifLoggedIn>
Welcome Back <sec:username/>!
</sec:ifLoggedIn>
<sec:ifNotLoggedIn>
<g:link controller='login' action='auth'>Login</g:link>
</sec:ifNotLoggedIn>

ifSwitched

Displays the inner body content only if the current user switched from another user. (See also Switch User
.)

37

<sec:ifLoggedIn>
Logged in as <sec:username/>
</sec:ifLoggedIn>

<sec:ifSwitched>

 Resume as <sec:switchedUserOriginalUsername/>

</sec:ifSwitched>

<sec:ifNotSwitched>

<sec:ifAllGranted roles='ROLE_SWITCH_USER'>

<form action='${request.contextPath}/j_spring_security_switch_user'
method='POST'>

Switch to user: <input type='text' name='j_username'/>

<input type='submit' value='Switch'/> </form>

</sec:ifAllGranted>

</sec:ifNotSwitched>

ifNotSwitched

Displays the inner body content only if the current user has not switched from another user.

switchedUserOriginalUsername

Renders the original user's username if the current user switched from another user.

<sec:ifSwitched>

 Resume as <sec:switchedUserOriginalUsername/>

</sec:ifSwitched>

access

Renders the body if the specified expression evaluates to or specified URL is allowed.true

<sec:access expression= >"hasRole('ROLE_USER')"

You're a user

</sec:access>

<sec:access url= >"/admin/user"

<g:link controller='admin' action='user'>Manage Users</g:link>

</sec:access>

38

You can also guard access to links generated from controller and action names or named URL mappings
instead of hard-coding the values, for example

<sec:access controller='admin' action='user'>

<g:link controller='admin' action='user'>Manage Users</g:link>

</sec:access>

or if you have a named URL mapping you can refer to that:

<sec:access mapping='manageUsers'>

<g:link mapping='manageUsers'>Manage Users</g:link>

</sec:access>

For even more control of the generated URL (still avoiding hard-coding) you can use tocreateLink
build the URL, for example

<sec:access url='${createLink(controller: 'admin', action: 'user', base: "/"
)}'>

<g:link controller='admin' action='user'>Manage Users</g:link>

</sec:access>

Be sure to include the attribute in this case to avoid appending the context name to thebase: "/"
URL.

noAccess

Renders the body if the specified expression evaluates to or URL isn't allowed.false

<sec:noAccess expression= >"hasRole('ROLE_USER')"

You're not a user

</sec:noAccess>

link

A wrapper around the standard Grails link tag that renders if the specified expression evaluates to true
or URL is allowed.

To define the expression to evaluate within the tag itself:

<sec:link controller= action= expression="myController" "myAction"
>My link text</sec:link>"hasRole('ROLE_USER')"

39

To use access controls defined, for example, in the interceptUrlMap:

<sec:link controller= action= >My link text</sec:link>"myController" "myAction"

5.2 SpringSecurityService
 provides security utilitygrails.plugin.springsecurity.SpringSecurityService

functions. It is a regular Grails service, so you use dependency injection to inject it into a controller,
service, taglib, and so on:

def springSecurityService

getCurrentUser()

Retrieves a domain class instance for the currently authenticated user. During authentication a user/person
domain class instance is retrieved to get the user's password, roles, etc. and the id of the instance is saved.
This method uses the id and the domain class to re-load the instance, or the username if the

 instance is not a .UserDetails GrailsUser

If you do not need domain class data other than the id, you should use the methodloadCurrentUser
instead.

Example:

class SomeController {

def springSecurityService

def someAction() {
 def user = springSecurityService.currentUser
 …
 }
}

loadCurrentUser()

Often it is not necessary to retrieve the entire domain class instance, for example when using it in a query
where only the id is needed as a foreign key. This method uses the GORM method to create aload
proxy instance. This will never be null, but can be invalid if the id doesn't correspond to a row in the
database, although this is very unlikely in this scenario because the instance would have been there during
authentication.

If you need other data than just the id, use the method instead.getCurrentUser

Example:

40

class SomeController {

def springSecurityService

def someAction() {
 def user = springSecurityService.isLoggedIn() ?
 springSecurityService.loadCurrentUser() :
 null
 (user) {if
 CreditCard card = CreditCard.findByIdAndUser(
 params.id as , user)Long
 …
 }
 …
 }
}

isLoggedIn()

Checks whether there is a currently logged-in user.

Example:

class SomeController {

def springSecurityService

def someAction() {
 (springSecurityService.isLoggedIn()) {if
 …
 }
 {else
 …
 }
 }
}

getAuthentication()

Retrieves the current user's . If authenticated, this will typically be a Authentication
.UsernamePasswordAuthenticationToken

If not authenticated and the is active (true by default) then theAnonymousAuthenticationFilter
anonymous user's authentication will be returned. This will be an instance of
grails.plugin.springsecurity.authentication.

 with a standard GrailsAnonymousAuthenticationToken
 instance as its Principal. Theorg.springframework.security.core.userdetails.User

authentication will have a single granted role, .ROLE_ANONYMOUS

Example:

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/Authentication.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/UsernamePasswordAuthenticationToken.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/web/authentication/AnonymousAuthenticationFilter.html

41

class SomeController {

def springSecurityService

def someAction() {
 def auth = springSecurityService.authentication
 username = auth.usernameString
 // a Collection of GrantedAuthority
 def authorities = auth.authorities
 authenticated = auth.authenticatedboolean
 …
 }
}

getPrincipal()

Retrieves the currently logged in user's . If authenticated, the principal will be a Principal
, unless you have created agrails.plugin.springsecurity.userdetails.GrailsUser

custom , in which case it will be whatever implementation of youUserDetailsService UserDetails
use there.

If not authenticated and the is active (true by default) then a standard AnonymousAuthenticationFilter
 is used.org.springframework.security.core.userdetails.User

Example:

class SomeController {

def springSecurityService

def someAction() {
 def principal = springSecurityService.principal
 username = principal.usernameString
 // a Collection of GrantedAuthority
 def authorities = principal.authorities
 enabled = principal.enabledboolean
 …
 }
}

encodePassword()

Hashes a password with the configured hashing scheme. By default the plugin uses bcrypt, but you can
configure the scheme with the grails.plugin.springsecurity.password.algorithm
attribute in . The supported values are 'bcrypt' to use bcrypt, 'pbkdf2' to use ,Config.groovy PBKDF2
or any message digest algorithm that is supported in your JDK; see for the availablethis Java page
algorithms.

You are discouraged from using MD5 or SHA-1 algorithms because ofstrongly
their well-known vulnerabilities. You should also use a salt for your passwords,
which greatly increases the computational complexity of computing passwords if
your database gets compromised. See .Salted Passwords

Example:

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/userdetails/UserDetails.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/web/authentication/AnonymousAuthenticationFilter.html
https://en.wikipedia.org/wiki/PBKDF2
https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html

42

class PersonController {

def springSecurityService

def updateAction() {
 def person = Person.get(params.id)

params.salt = person.salt
 (person.password != params.password) {if
 params.password = springSecurityService.encodePassword(
 password, salt)
 def salt = … // e.g. randomly generated using a utility method
 params.salt = salt
 }
 person.properties = params
 (!person.save(flush:)) {if true
 render view: 'edit', model: [person: person]
 return
 }
 redirect action: 'show', id: person.id
 }
}

If you are hashing the password in the User domain class (using beforeInsert
and) then don ' t ca l l encodePassword

 in your controller sincespringSecurityService.encodePassword()
you'll double-hash the password and users won't be able to log in. It's best to
encapsulate the password handling logic in the domain class.

updateRole()

Updates a role and, if you use instances to secure URLs, updates the role name in allRequestmap
affected definitions if the name was changed.Requestmap

Example:

class RoleController {

def springSecurityService

def update() {
 def roleInstance = Role.get(params.id)
 (!springSecurityService.updateRole(roleInstance, params)) {if
 render view: 'edit', model: [roleInstance: roleInstance]
 return
 }

flash.message = "The role was updated"
 redirect action: show, id: roleInstance.id
 }
}

deleteRole()

Deletes a role and, if you use instances to secure URLs, removes the role from all affectedRequestmap
 definitions. If a 's config attribute is only the role name (for example,Requestmap Requestmap

"/foo/bar/**=ROLE_FOO"), it is deleted.

43

Example:

class RoleController {

def springSecurityService

def delete() {
 def roleInstance = Role.get(params.id)
 {try
 springSecurityService.deleteRole (roleInstance
 flash.message = "The role was deleted"
 redirect action: list
 }
 (DataIntegrityViolationException e) {catch
 flash.message = "Unable to delete the role"
 redirect action: show, id: params.id
 }
 }
}

clearCachedRequestmaps()

Flushes the Requestmaps cache and triggers a complete reload. If you use instances toRequestmap
secure URLs, the plugin loads and caches all instances as a performance optimization.Requestmap
This action saves database activity because the requestmaps are checked for each request. Do not allow
the cache to become stale. When you create, edit or delete a , flush the cache. Both Requestmap

 and call clearCachedRequestmaps()for you. Call this method whenupdateRole() deleteRole()
you create a new or do other work that affects the cache.Requestmap Requestmap

Example:

class RequestmapController {

def springSecurityService

def save() {
 def requestmapInstance = Requestmap(params)new
 (!requestmapInstance.save(flush:)) {if true
 render view: 'create',
 model: [requestmapInstance: requestmapInstance]
 return
 }

springSecurityService.clearCachedRequestmaps()
 flash.message = "Requestmap created"
 redirect action: show, id: requestmapInstance.id
 }
}

reauthenticate()

Rebuilds an for the given username and registers it in the security context. You typicallyAuthentication
use this method after updating a user's authorities or other data that is cached in the Authentication
or . It also removes the user from the user cache to force a refresh at next login.Principal

Example:

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/Authentication.html

44

class UserController {

def springSecurityService

def update() {
 def userInstance = User.get(params.id)

params.salt = person.salt
 (params.password) {if
 params.password = springSecurityService.encodePassword(
 params.password, salt)
 def salt = … // e.g. randomly generated using a utility method
 params.salt = salt
 }
 userInstance.properties = params
 (!userInstance.save(flush:)) {if true
 render view: 'edit', model: [userInstance: userInstance]
 return
 }

 (springSecurityService.loggedIn &&if
 springSecurityService.principal.username ==
 userInstance.username) {
 springSecurityService.reauthenticate userInstance.username
 }

flash.message = "The user was updated"
 redirect action: show, id: userInstance.id
 }
}

5.3 SpringSecurityUtils
 is a utility class with staticgrails.plugin.springsecurity.SpringSecurityUtils

methods that you can call directly without using dependency injection. It is primarily an internal class but
can be called from application code.

authoritiesToRoles()

Extracts role names from an array or of .Collection GrantedAuthority

getPrincipalAuthorities()

Retrieves the currently logged-in user's authorities. It is empty (but never) if the user is not loggednull
in.

parseAuthoritiesString()

Splits a comma-delimited String containing role names into a of .List GrantedAuthority

ifAllGranted()

Checks whether the current user has all specified roles (a comma-delimited String of role names).
Primarily used by .SecurityTagLib.ifAllGranted

ifNotGranted()

Checks whether the current user has none of the specified roles (a comma-delimited String of role
names). Primarily used by .SecurityTagLib.ifNotGranted

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/GrantedAuthority.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/GrantedAuthority.html

45

ifAnyGranted()

Checks whether the current user has any of the specified roles (a comma-delimited String of role names).
Primarily used by .SecurityTagLib.ifAnyGranted

getSecurityConfig()

Retrieves the security part of the (from).Configuration grails-app/conf/Config.groovy

loadSecondaryConfig()

Used by dependent plugins to add configuration attributes.

reloadSecurityConfig()

Forces a reload of the security configuration.

isAjax()

Checks whether the request was triggered by an Ajax call. The standard way is to determine whether
 request header is set and has the value . In addition, you canX-Requested-With XMLHttpRequest

configure the name of the header with the grails.plugin.springsecurity.ajaxHeader
configuration attribute, but this is not recommended because all major JavaScript toolkits use the standard
name. Further, you can register a closure in with the name Config.groovy ajaxCheckClosure
that will be used to check if a request is an Ajax request. It is passed the request as its single argument,
e.g.

grails.plugin.springsecurity.ajaxCheckClosure = { request ->
 // or return true false
}

You can also force the request to be treated as Ajax by appending to your request query&ajax=true
string.

registerProvider()

Used by dependent plugins to register an bean name.AuthenticationProvider

registerFilter()

Used by dependent plugins to register a filter bean name in a specified position in the filter chain.

isSwitched()

Checks whether the current user switched from another user.

getSwitchedUserOriginalUsername()

Gets the original user's username if the current user switched from another user.

doWithAuth()

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/AuthenticationProvider.html

46

Executes a Closure with the current authentication. The one-parameter version which takes just a Closure
assumes that there's an authentication in the HTTP Session and that the Closure is running in a separate
thread from the web request, so the and aren't available to theSecurityContext Authentication
standard . This is primarily of use when you explicitly launch a new thread from aThreadLocal
controller action or service called in request scope, not from a Quartz job which isn't associated with an
authentication in any thread.

The two-parameter version takes a username and a Closure to authenticate as. This is will authenticate as
the specified user and execute the closure with that authentication. It restores the authentication to the one
that was active if it exists, or clears the context otherwise. This is similar to run-as and switch-user but is
only local to the Closure.

47

6 Events
Spring Security fires application events after various security-related actions such as successful login,
unsuccessful login, and so on. Spring Security uses two main event classes, AbstractAuthenticationEvent
and .AbstractAuthorizationEvent

6.1 Event Notification
You can set up event notifications in two ways. The sections that follow describe each approach in more
detail.

Register an event listener, ignoring events that do not interest you. Spring allows only partial event
subscription; you use generics to register the class of events that interest you, and you are notified of
that class and all subclasses.

Register one or more callback closures in that takegrails-app/conf/Config.groovy
advantage of the plugin's grails.plugin.springsecurity.

. The listener does the filtering for you.SecurityEventListener

AuthenticationEventPublisher

Spring Security publishes events using an which in turn fire events usingAuthenticationEventPublisher
the . By default no events are fired since the ApplicationEventPublisher

 instance registered is a AuthenticationEventPublisher
grails.plugin.springsecurity.authentication.

. But you can enable event publishing by setting NullAuthenticationEventPublisher
 in grails.plugin.springsecurity.useSecurityEventListener = true

.grails-app/conf/Config.groovy

You can use the setting to temporarily disable and enable theuseSecurityEventListener
callbacks, or enable them per-environment.

UsernameNotFoundException

Most authentication exceptions trigger an event with a similar name as described in this table:

Exception Event

AccountExpiredException AuthenticationFailureExpiredEvent

AuthenticationServiceException AuthenticationFailureServiceExceptionEvent

LockedException AuthenticationFailureLockedEvent

CredentialsExpiredException AuthenticationFailureCredentialsExpiredEvent

DisabledException AuthenticationFailureDisabledEvent

BadCredentialsException AuthenticationFailureBadCredentialsEvent

UsernameNotFoundException AuthenticationFailureBadCredentialsEvent

ProviderNotFoundException AuthenticationFailureProviderNotFoundEvent

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/event/AbstractAuthenticationEvent.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/access/event/AbstractAuthorizationEvent.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/AuthenticationEventPublisher.html
https://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/context/ApplicationEventPublisher.html

48

This holds for all exceptions except which triggers an UsernameNotFoundException
 just like a .AuthenticationFailureBadCredentialsEvent BadCredentialsException

This is a good idea since it doesn't expose extra information - there's no differentiation between a bad
password and a missing user. In addition, by default a missing user will trigger a

 for the same reasons. You can configure Spring Security to re-throwBadCredentialsException
the original instead of converting it to a UsernameNotFoundException

 by setting BadCredentialsException grails.plugin.springsecurity.dao.
 in .hideUserNotFoundExceptions = false grails-app/conf/Config.groovy

Fortunately all subclasses of have a methodAbstractAuthenticationFailureEvent getException()
that gives you access to the exception that triggered the event, so you can use that to differentiate between
a bad password and a missing user (if).hideUserNotFoundExceptions=false

6.2 Registering an Event Listener
Enable events with grails.plugin.springsecurity.useSecurityEventListener =

 and create one or more Groovy or Java classes, for example:true

package com.foo.bar

 org.springframework.context.ApplicationListenerimport
 org.springframework.security.authentication.event.import

AuthenticationSuccessEvent

class MySecurityEventListener
 ApplicationListener<AuthenticationSuccessEvent> {implements

void onApplicationEvent(AuthenticationSuccessEvent event) {
 // handle the event
 }
}

Register the class in :grails-app/conf/spring/resources.groovy

import com.foo.bar.MySecurityEventListener

beans = {
 mySecurityEventListener(MySecurityEventListener)
}

6.3 Registering Callback Closures
A l t e r n a t i v e l y , e n a b l e e v e n t s w i t h

 and registergrails.plugin.springsecurity.useSecurityEventListener = true
one or more callback closure(s) in and let grails-app/conf/Config.groovy

 do the filtering.SecurityEventListener

Implement the event handlers that you need, for example:

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/event/AbstractAuthenticationFailureEvent.html

49

grails {
 plugin {
 springsecurity {
 useSecurityEventListener = true

onInteractiveAuthenticationSuccessEvent = { e, appCtx ->
 // handle InteractiveAuthenticationSuccessEvent
 }

onAbstractAuthenticationFailureEvent = { e, appCtx ->
 // handle AbstractAuthenticationFailureEvent
 }

onAuthenticationSuccessEvent = { e, appCtx ->
 // handle AuthenticationSuccessEvent
 }

onAuthenticationSwitchUserEvent = { e, appCtx ->
 // handle AuthenticationSwitchUserEvent
 }

onAuthorizationEvent = { e, appCtx ->
 // handle AuthorizationEvent
 }
 }
 }
}

None of these closures are required; if none are configured, nothing will be called. Just implement the
event handlers that you need.

 When a user authenticates, Spring Security initially fires an .Note: AuthenticationSuccessEvent
This event fires before the is registered in the , whichAuthentication SecurityContextHolder
means that the methods that access the logged-in user will not work. LaterspringSecurityService
in the processing a second event is fired, an , andInteractiveAuthenticationSuccessEvent
when this happens the will have the . Depending onSecurityContextHolder Authentication
your needs, you can implement a callback for either or both events.

50

7 User, Authority (Role), and Requestmap Properties
Properties you are most likely to be override are the and (and if youUser Authority Requestmap
use the database to store mappings) class and field names.

Property Default Value Meaning

userLookup.userDomainClassName 'Person' User class name.

userLookup.usernamePropertyName 'username' User class username field.

userLookup.passwordPropertyName 'password' User class password field.

userLookup.authoritiesPropertyName 'authorities' User class role collection field.

userLookup.enabledPropertyName 'enabled' User class enabled field.

userLookup.accountExpiredPropertyName 'accountExpired' User class account expired field.

userLookup.accountLockedPropertyName 'accountLocked' User class account locked field.

userLookup.passwordExpiredPropertyName 'passwordExpired' User class password expired field.

userLookup.authorityJoinClassName 'PersonAuthority' User/Role many-many join class name.

authority.className 'Authority' Role class name.

authority.nameField 'authority' Role class role name field.

requestMap.className 'Requestmap' Requestmap class name.

requestMap.urlField 'url' Requestmap class URL pattern field.

requestMap.configAttributeField 'configAttribute' Requestmap class role/token field.

51

8 Authentication
The Spring Security plugin supports several approaches to authentication.

The default approach stores users and roles in your database, and uses an HTML login form which
prompts the user for a username and password. The plugin also supports other approaches as described in
the sections below, as well as add-on plugins that provide external authentication providers such as LDAP
and single sign-on using CAS

8.1 Basic and Digest Authentication
To use in your application, set the attribute to . AlsoHTTP Basic Authentication useBasicAuth true
change the default value to one that suits your application, for example:basic.realmName

grails.plugin.springsecurity.useBasicAuth = true
grails.plugin.springsecurity.basic.realmName = "Ralph's Bait and Tackle"

Property Default Description

useBasicAuth false Whether to use basic authentication.

basic.realmName 'Grails Realm' Realm name displayed in the browser authentication popup.

basic. credentialsCharset 'UTF-8' The character set used to decode Base64-encoded data

With this authentication in place, users are prompted with the standard browser login dialog instead of
being redirected to a login page.

If you don't want all of your URLs guarded by Basic Auth, you can partition the URL patterns and apply
Basic Auth to some, but regular form login to others. For example, if you have a web service that uses
Basic Auth for URLs, you would configure that using the config/webservice/** chainMap
attribute:

grails.plugin.springsecurity.filterChain.chainMap = [
 '/webservice/**': 'JOINED_FILTERS,-exceptionTranslationFilter',
 '/**':
'JOINED_FILTERS,-basicAuthenticationFilter,-basicExceptionTranslationFilter'
]

In this example we're using the keyword instead of explicitly listing the filter names.JOINED_FILTERS
Specifying means to use all of the filters that were configured using the variousJOINED_FILTERS
config options. In each case we also specify that we want to exclude one or more filters by prefixing their
names with .-

For the URLs, we want all filters except for the standard /webservice/**
 since we want to use just the one configured for Basic Auth. AndExceptionTranslationFilter

for the URLs (everything else) we want everything except for the Basic Auth filter and its/**
configured .ExceptionTranslationFilter

https://grails.org/plugin/spring-security-ldap
https://grails.org/plugin/spring-security-cas
https://en.wikipedia.org/wiki/Basic_access_authentication

52

 is similar to Basic but is more secure because it does not send your password inDigest Authentication
obfuscated cleartext. Digest resembles Basic in practice - you get the same browser popup dialog when
you authenticate. But because the credential transfer is genuinely hashed (instead of just Base64-encoded
as with Basic authentication) you do not need SSL to guard your logins.

Property
Default
Value

Meaning

useDigestAuth false Whether to use Digest authentication.

digest.realmName
'Grails
Realm'

Realm name displayed in the browser popup

digest.key 'changeme'
Key used to build the nonce for authentication; it should be
changed but that's not required.

d i g e s t .
nonceValiditySeconds

300 How long a nonce stays valid.

d i g e s t .
passwordAlreadyEncoded

false Whether you are managing the password hashing yourself.

d i g e s t .
createAuthenticatedToken

false

If , creates an authenticated true
 to avoidUsernamePasswordAuthenticationToken

loading the user from the database twice. However, this process
skips the isAccountNonExpired(), isAccountNonLocked(),
isCredentialsNonExpired(), isEnabled() checks, so it is not
advised.

d i g e s t .
useCleartextPasswords

false
If , a cleartext password encoder is used (nottrue
recommended). If , passwords hashed by false

 are stored in the database.DigestAuthPasswordEncoder

Digest authentication has a problem in that by default you store cleartext passwords in your database. This
is because the browser hashes your password along with the username and Realm name, and this is
compared to the password hashed using the same algorithm during authentication. The browser does not
know about your algorithm or salt source, so to hash them the same way you need toMessageDigest
load a cleartext password from the database.

The plugin does provide an alternative, although it has no configuration options (in particular the digest
algorithm cannot be changed). If is (the default), thendigest.useCleartextPasswords false
the bean is replaced with an instance of passwordEncoder
grails.plugin.springsecurity.authentication.encoding.

. This encoder uses the same approach as the browser, that is, itDigestAuthPasswordEncoder
combines your password along with your username and Realm name essentially as a salt, and hashes with
MD5. MD5 is not recommended in general, but given the typical size of the salt it is reasonably safe to
use.

The only required attribute is , which you must set to , but you probably alsouseDigestAuth true
want to change the realm name:

grails.plugin.springsecurity.useDigestAuth = true
grails.plugin.springsecurity.digest.realmName = "Ralph's Bait and Tackle"

https://en.wikipedia.org/wiki/Digest_access_authentication

53

Digest authentication cannot be applied to a subset of URLs like Basic authentication can. This is due to
the password encoding issues. So you cannot use the attribute here - all URLs will bechainMap
guarded.

Note that since the Digest auth password encoder is different from the typical
encoders you must to pass the username as the "salt" value. The generated User class
uses which assumes you're not using a salt value. IfspringSecurityService
you use the generated code in the User class to encode your password, change the
dependency injection for springSecurityService with one for the passwordEncoder
bean instead:

transient passwordEncoder

and change the code in encodePassword() from

password = springSecurityService.encodePassword(password)

to

password = passwordEncoder.encodePassword(password, username)

8.2 Certificate (X509) Login Authentication
Another authentication mechanism supported by Spring Security is certificate-based, or "mutual
authentication". It requires HTTPS, and you must configure the server to require a client certificate
(ordinarily only the server provides a certificate). Your username is extracted from the client certificate if
it is valid, and you are "pre-authenticated". As long as a corresponding username exists in the database,
your authentication succeeds and you are not asked for a password. Your containsAuthentication
the authorities associated with your username.

The table describes available configuration options.

54

Property Default Value Meaning

useX509 false Whether to support certificate-based logins

x509.continueFilterChainOn
UnsuccessfulAuthentication

true
Whether to proceed when an authentication attempt
fails to allow other authentication mechanisms to
process the request.

x509.subjectDnRegex 'CN=(.*?)(?:,|$)'
Regular expression (regex) for extracting the
username from the certificate's subject name.

x509.checkForPrincipalChanges false
Whether to re-extract the username from the
certificate and check that it's still the current user
when a valid already exists.Authentication

x509.invalidateSessionOn
PrincipalChange

true
Whether to invalidate the session if the principal
c h a n g e d (b a s e d o n a

 check).checkForPrincipalChanges

x509.subjectDnClosure none

I f s e t , t h e p l u g i n ' s
 class isClosureX509PrincipalExtractor

used to extract information from the X.509
certificate using the specified closure

x509. throwException
WhenTokenRejected

false If thrown a true BadCredentialsException

The details of configuring your server for SSL and configuring browser certificates are beyond the scope
of this document. If you use Tomcat, see its . To get a test environment working, seeSSL documentation
the instructions in .this discussion at Stack Overflow

8.3 Remember-Me Cookie
Spring Security supports creating a remember-me cookie so that users are not required to log in with a
username and password for each session. This is optional and is usually implemented as a checkbox on
the login form; the default supplied by the plugin has this feature.auth.gsp

https://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.html
https://stackoverflow.com/questions/1180397/tomcat-server-client-self-signed-ssl-certificate

55

Property Default Value Meaning

rememberMe.cookieName 'grails_remember_me'
remember-me cookie name; should
be unique per application.

r e m e m b e r M e .
alwaysRemember

false
If , create a remember-metrue
cookie even if no checkbox is on
the form.

r e m e m b e r M e .
tokenValiditySeconds

1209600 (14 days) Max age of the cookie in seconds.

rememberMe.parameter '_spring_security_remember_me'
Login form remember-me
checkbox name.

rememberMe.key 'grailsRocks'
Value used to encode cookies;
should be unique per application.

rememberMe.useSecureCookie none

Whether to use a secure cookie or
not; if a secure cookie istrue
created, if a non-securefalse
cookie is created, and if not set, a
secure cookie is created if the
request used HTTPS

r e m e m b e r M e .
createSessionOnSuccess

true

Whether to create a session of one
doesn't exist to ensure that the

 is stored forAuthentication
future requests

rememberMe.persistent false
If , stores persistent logintrue
information in the database.

rememberMe.persistentToken.
domainClassName

none
Domain class used to manage
persistent logins.

rememberMe.persistentToken.
seriesLength

16
Number of characters in the
cookie's attribute.series

rememberMe.persistentToken.
tokenLength

16
Number of characters in the
cookie's attribute.token

atr.rememberMeClass RememberMeAuthenticationToken remember-me authentication class.

You are most likely to change these attributes:

rememberMe.cookieName. Purely aesthetic as most users will not look at their cookies, but you
probably want the display name to be application-specific rather than "grails_remember_me".

rememberMe.key. Part of a salt when the cookie is hashed. Changing the default makes it harder
to execute brute-force attacks.

rememberMe.tokenValiditySeconds. Default is two weeks; set it to what makes sense for
your application.

Persistent Logins

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/RememberMeAuthenticationToken.html

56

The remember-me cookie is very secure, but for an even stronger solution you can use persistent logins
that store the username in the database. See the for a description of theSpring Security docs
implementation.

Persistent login is also useful for authentication schemes like OpenID and Facebook, where you do not
manage passwords in your database, but most of the other user information is stored locally. Without a
password you cannot use the standard cookie format, so persistent logins enable remember-me cookies in
these scenarios.

To use this feature, run the script. This will create the domain class, ands2-create-persistent-token
register its name in . It will also enable persistent logins bygrails-app/conf/Config.groovy
setting to .rememberMe.persistent true

8.4 Ajax Authentication
The typical pattern of using web site authentication to access restricted pages involves intercepting access
requests for secure pages, redirecting to a login page (possibly off-site, for example when using a Single
Sign-on implementation such as), and redirecting back to the originally-requested page after aCAS
successful login. Each page can also have a login link to allow explicit logins at any time.

Another option is to also have a login link on each page and to use JavaScript to present a login form
within the current page in a popup. The JavaScript code submits the authentication request and displays
success or error messages as appropriate.

The plugin supports Ajax logins, but you need to create your own client-side code. There are only a few
necessary changes, and of course the sample code here is pretty basic so you should enhance it for your
needs.

The approach here involves editing your template page(s) to show "You're logged in as ..." text if logged
in and a login link if not, along with a hidden login form that is shown using JavaScript.

This example uses and , a jQuery plugin that creates and manages dialogs and popups.jQuery jqModal
Download and copy it to , and download jqModal.js grails-app/assets/javascripts

 and copy it to .jqModal.css grails-app/assets/stylesheets

Create and add this JavaScript code:grails-app/assets/javascripts/ajaxLogin.js

var onLogin;

$.ajaxSetup({
 beforeSend: function(jqXHR, event) {
 (event.url != $().attr()) {if "#ajaxLoginForm" "action"
 // save the 'success' function later use for if
 // it wasn't triggered by an explicit login click
 onLogin = event.success;
 }
 },
 statusCode: {
 // Set up a global Ajax error handler to handle 401
 // unauthorized responses. If a 401 status code is
 // returned the user is no longer logged in (e.g. when
 // the session times out), so re-display the login form.
 401: function() {
 showLogin();
 }
 }
});

https://docs.spring.io/spring-security/site/docs/3.2.x/reference/htmlsingle/#remember-me
http://grails.org/plugin/spring-security-cas
https://jquery.com/
http://jquery.iceburg.net/jqModal/

57

function showLogin() {
 ajaxLogin = $();var "#ajaxLogin"
 ajaxLogin.css(,);"text-align" "center"
 ajaxLogin.jqmShow();
}

function logout(event) {
 event.preventDefault();
 $.ajax({
 url: $().attr(),"#_logout" "href"
 method: ,"POST"
 success: function(data, textStatus, jqXHR) {
 window.location = ;"/"
 },
 error: function(jqXHR, textStatus, errorThrown) {
 console.log(+ textStatus +"Logout error, textStatus: "
 + errorThrown);", errorThrown: "
 }
 });
}

function authAjax() {
 $().html().show();"#loginMessage" "Sending request ..."

58

 form = $();var "#ajaxLoginForm"
 $.ajax({
 url: form.attr(),"action"
 method: ,"POST"
 data: form.serialize(),
 dataType: ,"JSON"
 success: function(json, textStatus, jqXHR) {
 (json.success) {if
 form[0].reset();
 $().empty();"#loginMessage"
 $().jqmHide();"#ajaxLogin"
 $().html("#loginLink"
 'Logged in as ' + json.username +
 ' (<a href= #_logout href"' + $(" ").attr(" ") +

 id= >Logout)'); '" "logout"
 $().click(logout);"#logout"
 (onLogin) {if
 // execute the saved event.success function
 onLogin(json, textStatus, jqXHR);
 }
 }
 (json.error) {else if
 $().html('' +"#loginMessage" "errorMessage"
 json.error +);"</error>"
 }
 {else
 $().html(jqXHR.responseText);"#loginMessage"
 }
 },
 error: function(jqXHR, textStatus, errorThrown) {
 (jqXHR.status == 401 && jqXHR.getResponseHeader()) {if "Location"
 // the login request itself wasn't allowed, possibly because the
 // post url is incorrect and access was denied to it
 $().html('' +"#loginMessage" "errorMessage"
 'Sorry, there was a problem with the login request</error>');
 }
 {else
 responseText = jqXHR.responseText;var
 (responseText) {if
 json = $.parseJSON(responseText);var
 (json.error) {if
 $().html('' +"#loginMessage" "errorMessage"
 json.error +);"</error>"
 ;return
 }
 }
 {else
 responseText = +"Sorry, an error occurred (status: "
 textStatus + + errorThrown + ;", error: " ")"
 }
 $().html('' +"#loginMessage" "errorMessage"
 responseText +);"</error>"
 }
 }
 });
}

$(function() {
 $().jqm({ closeOnEsc: });"#ajaxLogin" true
 $().jqmAddClose();"#ajaxLogin" "#cancelLogin"
 $().submit(function(event) {"#ajaxLoginForm"
 event.preventDefault();
 authAjax();
 });
 $().click(authAjax);"#authAjax"
 $().click(logout);"#logout"
});

and create and add this CSS:grails-app/assets/stylesheets/ajaxLogin.css

59

#ajaxLogin {
 padding: 0px;
 text-align: center;
 display: none;
}

#ajaxLogin . {inner
 width: 400px;
 padding-bottom: 6px;
 margin: 60px auto;
 text-align: left;
 border: 1px solid #aab;
 background-color: #f0f0fa;
 -moz-box-shadow: 2px 2px 2px #eee;
 -webkit-box-shadow: 2px 2px 2px #eee;
 -khtml-box-shadow: 2px 2px 2px #eee;
 box-shadow: 2px 2px 2px #eee;
}

#ajaxLogin . .fheader {inner
 padding: 18px 26px 14px 26px;
 background-color: #f7f7ff;
 margin: 0px 0 14px 0;
 color: #2e3741;
 font-size: 18px;
 font-weight: bold;
}

#ajaxLogin . .cssform p {inner
 clear: left;
 margin: 0;
 padding: 4px 0 3px 0;
 padding-left: 105px;
 margin-bottom: 20px;
 height: 1%;
}

#ajaxLogin . .cssform input[type=],inner "text"
#ajaxLogin . .cssform input[type=] {inner "password"
 width: 150px;
}

#ajaxLogin . .cssform label {inner
 font-weight: bold;
 : left;float
 text-align: right;
 margin-left: -105px;
 width: 150px;
 padding-top: 3px;
 padding-right: 10px;
}

.ajaxLoginButton {
 background-color: #efefef;
 font-weight: bold;
 padding: 0.5em 1em;
 display: -moz-inline-stack;
 display: inline-block;
 vertical-align: middle;
 white-space: nowrap;
 overflow: visible;
 text-decoration: none;
 -moz-border-radius: 0.3em;
 -webkit-border-radius: 0.3em;
 border-radius: 0.3em;
}

.ajaxLoginButton:hover, .ajaxLoginButton:focus {
 background-color: #999999;
 color: #ffffff;
}

#ajaxLogin . .login_message {inner
 padding: 6px 25px 20px 25px;
 color: #c33;
}

60

#ajaxLogin . .text_ {inner
 width: 120px;
}

#ajaxLogin . .chk {inner
 height: 12px;
}

.errorMessage {
 color: red;
}

There ' s no need to reg is te r the JavaScr ip t f i les in
 if you have this grails-app/assets/javascripts/application.js require_tree

directive:

//= require_tree .

but you can explicitly include them if you want. Register the two CSS files in
:/grails-app/assets/stylesheets/application.css

/*
 …
 *= require ajaxLogin
 *= require jqModal
 …
 */

We'll need some GSP code to define the HTML, so create
 and add this:grails-app/views/includes/_ajaxLogin.gsp

61

"logoutLink" "display: none;"
<g:link elementId='_logout' controller='logout'>Logout</g:link>

<span id= style="loginLink" "position: relative; margin-right: 30px; :float
>right"

<sec:ifLoggedIn>
 Logged in as <sec:username/> (<g:link elementId='logout'
controller='logout'>Logout</g:link>)
</sec:ifLoggedIn>
<sec:ifNotLoggedIn>
 Login"#" "showLogin(); ;"return false
</sec:ifNotLoggedIn>

<div id= class= style= >"ajaxLogin" "jqmWindow" "z-index: 3000;"
 <div class= >" "inner
 <div class= >Please Login..</div>"fheader"
 <form action="${request.contextPath}/j_spring_security_check"
 method= id= name="POST" "ajaxLoginForm" "ajaxLoginForm"
 class= autocomplete= >"cssform" "off"
 <p>
 <label = >Username:</label>for "username"
 <input type= class="text" "text_"
 name= id= />"j_username" "username"
 </p>
 <p>
 <label = >Password</label>for "password"
 <input type= class="password" "text_"
 name= id= />"j_password" "password"
 </p>
 <p>
 <label = >Remember me</label>for "remember_me"
 <input type= class= id="checkbox" "chk" "remember_me"
 name= />"_spring_security_remember_me"
 </p>
 <p>
 <input type= id= name="submit" "authAjax" "authAjax"
 value= class= />"Login" "ajaxLoginButton"
 <input type= id= value="button" "cancelLogin" "Cancel"
 class= />"ajaxLoginButton"
 </p>
 </form>
 <div style= id= ></div>"display: none; text-align: left;" "loginMessage"
 </div>
</div>

And finally, update the layout to include grails-app/views/layouts/main.gsp
, adding it after the tag:_ajaxLogin.gsp <body>

<html lang= class= >"en" "no-js"
 <head>
 …
 <g:layoutHead/>
 </head>
 <body>
 <g:render template='/includes/ajaxLogin'/>
 …
 <g:layoutBody/>
 </body>
</html>

The important aspects of this code are:

62

There is a positioned in the top-right that shows the username and a logout link when logged
in, and a login link otherwise.

The form posts to the same URL as the regular form, , and is/j_spring_security_check
mostly the same except for the addition of a "Cancel" button (you can also dismiss the dialog by
clicking outside of it or with the escape key).

Error messages are displayed within the popup <div>.

Because there is no page redirect after successful login, the Javascript replaces the login link to give
a visual indication that the user is logged in.

The Logout link also uses Ajax to submit a POST request to the standard logout url and redirect you
to the index page after the request finishes.

Note that in the JavaScript function, you'll need to change the url in the logout success
callback to the correct post-logout value, e.g. window.location = "/appname";

How Does Ajax login Work?

Most Ajax libraries include an header that indicates that the request was made by X-Requested-With
 instead of being triggered by clicking a regular hyperlink or form submit button.XMLHttpRequest

The plugin uses this header to detect Ajax login requests, and uses subclasses of some of Spring Security's
classes to use different redirect urls for Ajax requests than regular requests. Instead of showing full pages,

 has JSON-generating methods , , and LoginController ajaxSuccess() ajaxDenied()
 that generate JSON that the login Javascript code can use to appropriately display successauthfail()

or error messages.

To summarize, the typical flow would be

63

click the link to display the login form

enter authentication details and click Login

the form is submitted using an Ajax request

if the authentication succeeds:

a redirect to occurs (this URL is configurable)/login/ajaxSuccess

the rendered response is JSON and it contains two values, a boolean value with thesuccess
value and a string value with the authenticated user's login nametrue username

the client determines that the login was successful and updates the page to indicate the the user
is logged in; this is necessary since there's no page redirect like there would be for a non-Ajax
login

if the authentication fails:

a redirect to occurs (this URL is configurable)/login/authfail?ajax=true

the rendered response is JSON and it contains one value, a string value with theerror
displayable error message; this will be different depending on why the login was unsuccessful
(bad username or password, account locked, etc.)

the client determines that the login was not successful and displays the error message

note that both a successful and an unsuccessful login will trigger the Ajax callback; theonSuccess
 callback will only be triggered if there's an exception or network issueonError

64

9 Authentication Providers
The plugin registers authentication providers that perform authentication by implementing the

 interface.AuthenticationProvider

Property Default Value Meaning

providerNames
['daoAuthenticat ionProvider ' ,
'anonymousAuthenticationProvider',
'rememberMeAuthenticationProvider']

Bean names of
authentication
providers.

Use to authenticate using the User and Role database tables, daoAuthenticationProvider
 to log in with a rememberMe cookie, and rememberMeAuthenticationProvider

 to create an 'anonymous' authentication if no otheranonymousAuthenticationProvider
provider authenticates.

To customize this list, you define a attribute with a list of bean names. The beansproviderNames
must be declared either by the plugin, or yourself in or .resources.groovy resources.xml
Suppose you have a custom in :MyAuthenticationProvider resources.groovy

beans = {
 myAuthenticationProvider(com.foo.MyAuthenticationProvider) {
 // attributes
 }
}

You register the provider in as:grails-app/conf/Config.groovy

grails.plugin.springsecurity.providerNames = [
 'myAuthenticationProvider',
 'anonymousAuthenticationProvider',
 'rememberMeAuthenticationProvider']

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/AuthenticationProvider.html

65

10 Custom UserDetailsService
When you authenticate users from a database using (the default mode in theDaoAuthenticationProvider
plugin if you have not enabled OpenID, LDAP, and so on), an implementation of isUserDetailsService
required. This class is responsible for returning a concrete implementation of . The pluginUserDetails
provides grails.plugin.springsecurity.userdetails. GormUserDetailsService
as i t s implementa t ion and UserDetailsService

 (which extends Springgrails.plugin.springsecurity.userdetails. GrailsUser
Security's) as its implementation.User UserDetails

You can extend or replace with your own implementation by defining aGormUserDetailsService
bean in (or) with the samegrails-app/conf/spring/resources.groovy resources.xml
bean name, . This works because application beans are configured after pluginuserDetailsService
beans and there can only be one bean for each name. The plugin uses an extension of

, UserDetailsService grails.plugin.springsecurity.userdetails.
, which adds the method GrailsUserDetailsService UserDetails

 to support use cases likeloadUserByUsername(String username, boolean loadRoles)
in LDAP where you often infer all roles from LDAP but might keep application-specific user details in
the database. Create the class in and not in - although thesrc/groovy grails-app/services
interface name includes "Service", this is just a coincidence and the bean wouldn't benefit from being a
Grails service.

In the following example, the and implementationUserDetails GrailsUserDetailsService
adds the full name of the user domain class in addition to the standard information. If you extract extra
data from your domain class, you are less likely to need to reload the user from the database. Most of your
common data can be kept along with your security credentials.

This example adds in a field. Keeping the full name cached avoids hitting the database justfullName
for that lookup. already adds the value from the domain class to so we can do a moreGrailsUser id
efficient database load of the user. If all you have is the username, then you need to call

, but if you have the id you can call User.findByUsername(principal.username)
. Even if you have a unique index on the database column,User.get(principal.id) username

loading by primary key is usually more efficient because it takes advantage of Hibernate's first-level and
second-level caches.

There is not much to implement other than your application-specific lookup code:

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/dao/DaoAuthenticationProvider.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/userdetails/UserDetailsService.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/userdetails/UserDetails.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/userdetails/User.html

66

package com.mycompany.myapp

 grails.plugin.springsecurity.userdetails.GrailsUserimport

 org.springframework.security.core.GrantedAuthorityimport
 org.springframework.security.core.userdetails.Userimport

class MyUserDetails GrailsUser {extends

 fullNamefinal String

MyUserDetails(username, password, enabled,String String boolean
 accountNonExpired, credentialsNonExpired,boolean boolean
 accountNonLocked,boolean
 Collection<GrantedAuthority> authorities,
 id, fullName) {long String
 (username, password, enabled, accountNonExpired,super
 credentialsNonExpired, accountNonLocked, authorities, id)

.fullName = fullNamethis
 }
}

package com.mycompany.myapp

 grails.plugin.springsecurity.SpringSecurityUtilsimport
 grails.plugin.springsecurity.userdetails.GrailsUserimport
 grails.plugin.springsecurity.userdetails.GrailsUserDetailsServiceimport
 grails.transaction.Transactionalimport
 org.springframework.security.core.authority.GrantedAuthorityImplimport
 org.springframework.security.core.userdetails.UserDetailsimport
 org.springframework.security.core.userdetails.UsernameNotFoundExceptionimport

class MyUserDetailsService GrailsUserDetailsService {implements

/**
 * Some Spring Security classes (e.g. RoleHierarchyVoter) expect at least
 * one role, so we give a user with no granted roles one which getsthis
 * past that restriction but doesn't grant anything.
 */
 List NO_ROLES =static final
 [GrantedAuthorityImpl(SpringSecurityUtils.NO_ROLE)]new

UserDetails loadUserByUsername(username, loadRoles)String boolean
 UsernameNotFoundException {throws
 loadUserByUsername(username)return
 }

@Transactional(readOnly= ,true
 noRollbackFor=[IllegalArgumentException, UsernameNotFoundException])
 UserDetails loadUserByUsername(username)String
 UsernameNotFoundException {throws

User user = User.findByUsername(username)
 (!user) UsernameNotFoundException(if throw new
 'User not found', username)

def authorities = user.authorities.collect {
 GrantedAuthorityImpl(it.authority)new
 }

 MyUserDetails(user.username, user.password,return new
 user.enabled, !user.accountExpired, !user.passwordExpired,
 !user.accountLocked, authorities ?: NO_ROLES, user.id,
 user.firstName + + user.lastName)" "
 }
}

67

The <code>loadUserByUsername</code> method is transactional, but read-only, to avoid lazy loading
exceptions when accessing the collection. There are obviously no database updates hereauthorities
but this is a convenient way to keep the Hibernate open to enable accessing the roles.Session

To use your implementation, register it in likegrails-app/conf/spring/resources.groovy
this:

beans = {
 userDetailsService(com.mycompany.myapp.MyUserDetailsService)
}

Another option for loading users and roles from the database is to subclass
 - thegrails.plugin.springsecurity.userdetails. GormUserDetailsService

methods are all protected so you can override as needed.

T h i s a p p r o a c h w o r k s w i t h a l l b e a n s d e f i n e d i n
 - you can replace or subclass any ofSpringSecurityCoreGrailsPlugin.doWithSpring()

the Spring beans to provide your own functionality when the standard extension mechanisms are
insufficient.

Flushing the Cached Authentication

If you store mutable data in your custom implementation (such as full name in theUserDetails
preceding example), be sure to rebuild the if it changes. Authentication

 has a method that does this for you:springSecurityService reauthenticate

class MyController {

def springSecurityService

def someAction() {
 def user = …
 // update user data
 user.save()
 springSecurityService.reauthenticate user.username
 …
 }
}

68

11 Password and Account Protection
The sections that follow discuss approaches to protecting passwords and user accounts.

11.1 Password Hashing
By default the plugin uses the bcrypt algorithm to hash passwords. You can customize this with the

 attribute as described below. Ingrails.plugin.springsecurity.password.algorithm
addition you can increase the security of your passwords by adding a salt, which can be a field of the

 instance, a global static value, or any custom value you want.UserDetails

 is a much more secure alternative to the message digest approaches since it supports abcrypt
customizable work level which when increased takes more computation time to hash the users' passwords,
but also dramatically increases the cost of brute force attacks. Given how easy it is to use GPUs to crack

, you should definitely consider using bcrypt for new projects and switching to it for existingpasswords
projects. Note that due to the approach used by bcrypt, you cannot add an additional salt like you can with
the message digest algorithms.

Enable bcrypt by using the value for the config attribute:'bcrypt' algorithm

grails.plugin.springsecurity.password.algorithm = 'bcrypt'

and optionally changing the number of rekeying rounds (which will affect the time it takes to hash
passwords), e.g.

grails.plugin.springsecurity.password.bcrypt.logrounds = 15

Note that the number of rounds must be between 4 and 31.

 is also supported.PBKDF2

The table shows configurable password hashing attributes.

If you want to use a message digest hashing algorithm, see for the available algorithms.this Java page

Property Default Description

password.algorithm 'bcrypt'
passwordEncoder algorithm; 'bcrypt' to use bcrypt, 'pbkdf2' to
use , or any message digest algorithm that isPBKDF2
supported in your JDK

password.encodeHashAsBase64 false If , Base64-encode the hashed password.true

password.bcrypt.logrounds 10 the number of rekeying rounds to use when using bcrypt

password.hash.iterations 10000
the number of iterations which will be executed on the
hashed password/salt.

11.2 Salted Passwords

https://en.wikipedia.org/wiki/Bcrypt
https://www.google.com/search?q=gpu+password+cracking
https://www.google.com/search?q=gpu+password+cracking
https://en.wikipedia.org/wiki/PBKDF2
https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html
https://en.wikipedia.org/wiki/PBKDF2

69

The Spring Security plugin uses hashed passwords and a digest algorithm that you specify. For enhanced
protection against dictionary attacks, you should use a salt in addition to digest hashing.

Note that if you use bcrypt (the default setting) or pbkdf2, do not configure a salt
(e.g. the property or a custom dao.reflectionSaltSourceProperty

 bean) because these algorithms use their own internally.saltSource

There are two approaches to using salted passwords in the plugin - defining a field in the UserDetails
class to access by reflection, or by directly implementing yourself.SaltSource

dao.reflectionSaltSourceProperty

Set the configuration property:dao.reflectionSaltSourceProperty

grails.plugin.springsecurity.dao.reflectionSaltSourceProperty = 'username'

This property belongs to the class. By default it is an instance of UserDetails
, which extends the standardgrails.plugin.springsecurity.userdetails.GrailsUser

Spring Security and not your 'person' domain class. This limits the available fields unless youUser class
use a .custom UserDetailsService

As long as the username does not change, this approach works well for the salt. If you choose a property
that the user can change, the user cannot log in again after changing it unless you re-hash the password
with the new value. So it's best to use a property that doesn't change.

Another option is to generate a random salt when creating users and store this in the database by adding a
new field to the 'person' class. This approach requires a custom because youUserDetailsService
need a custom implementation that also has a 'salt' property, but this is more flexible andUserDetails
works in cases where users can change their username.

SystemWideSaltSource and Custom SaltSource

Spring Security supplies a simple implementation, , which uses theSaltSource SystemWideSaltSource
same salt for each user. It's less robust than using a different value for each user but still better than no salt
at all.

An example override of the salt source bean using SystemWideSaltSource would look like this:

import org.springframework.security.authentication.dao.SystemWideSaltSource
beans = {
 saltSource(SystemWideSaltSource) {
 systemWideSalt = 'the_salt_value'
 }
}

To have full control over the process, you can implement the interface and replace theSaltSource
plugin's implementation with your own by defining a bean in

 with the name :grails-app/conf/spring/resources.groovy saltSource

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/dao/SaltSource.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/userdetails/User.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/dao/SystemWideSaltSource.html

70

beans = {
 saltSource(com.foo.bar.MySaltSource) {
 // set properties
 }
}

Hashing Passwords

Regardless of the implementation, you need to be aware of what value to use for a salt when creating or
updating users, for example, in a 's or action. When hashing theUserController save update
password, you use the two-parameter version of :springSecurityService.encodePassword()

class UserController {

def springSecurityService

def save() {
 def userInstance = User(params)new
 userInstance.password = springSecurityService.encodePassword(
 params.password, userInstance.username)
 (!userInstance.save(flush:)) {if true
 render view: 'create', model: [userInstance: userInstance]
 return
 }

flash.message = "The user was created"
 redirect action: show, id: userInstance.id
 }

def update() {
 def userInstance = User.get(params.id)

 (params.password) {if
 params.password = springSecurityService.encodePassword(
 params.password, userInstance.username)
 }
 userInstance.properties = params
 (!userInstance.save(flush:)) {if true
 render view: 'edit', model: [userInstance: userInstance]
 return
 }

 (springSecurityService.loggedIn &&if
 springSecurityService.principal.username ==
 userInstance.username) {
 springSecurityService.reauthenticate userInstance.username
 }

flash.message = "The user was updated"
 redirect action: show, id: userInstance.id
 }
}

If you are encoding the password in the User domain class (using beforeInsert
and) then don ' t ca l l encodePassword

 in your controller sincespringSecurityService.encodePassword()
you'll double-hash the password and users won't be able to log in. It's best to
encapsulate the password handling logic in the domain class. In newer versions of
the plugin (version 1.2 and higher) code is auto-generated in the user class so you'll
need to adjust that password hashing for your salt approach.

71

11.3 Account Locking and Forcing Password Change
Spring Security supports four ways of disabling a user account. When you attempt to log in, the

 implementation creates an instance of that uses theseUserDetailsService UserDetails
accessor methods:

isAccountNonExpired()

isAccountNonLocked()

isCredentialsNonExpired()

isEnabled()

If you use the script to create a user domain class, it creates a class with correspondings2-quickstart
properties to manage this state.

When an accessor returns for , , or true accountExpired accountLocked passwordExpired
or returns for , a corresponding exception is thrown:false enabled

Accessor Property Exception

isAccountNonExpired() accountExpired AccountExpiredException

isAccountNonLocked() accountLocked LockedException

isCredentialsNonExpired() passwordExpired CredentialsExpiredException

isEnabled() enabled DisabledException

You can configure an exception mapping in to associate a URL to any or all of theseConfig.groovy
exceptions to determine where to redirect after a failure, for example:

grails.plugin.springsecurity.failureHandler.exceptionMappings = [
 'org.springframework.security.authentication.LockedException':
 '/user/accountLocked',
 'org.springframework.security.authentication.DisabledException':
 '/user/accountDisabled',
 'org.springframework.security.authentication.AccountExpiredException':
 '/user/accountExpired',
 'org.springframework.security.authentication.CredentialsExpiredException':
 '/user/passwordExpired'
]

Without a mapping for a particular exception, the user is redirected to the standard login fail page (by
default), which displays an error message from this table:/login/authfail

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/AccountExpiredException.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/LockedException.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/CredentialsExpiredException.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/DisabledException.html

72

Property Default

errors.login.disabled "Sorry, your account is disabled."

errors.login.expired "Sorry, your account has expired."

errors.login.passwordExpired "Sorry, your password has expired."

errors.login.locked "Sorry, your account is locked."

errors.login.fail
"Sorry, we were not able to find a user with that username and
password."

You can customize these messages by setting the corresponding property in , forConfig.groovy
example:

grails.plugin.springsecurity.errors.login.locked = "None shall pass."

You can use this functionality to manually lock a user's account or expire the password, but you can
automate the process. For example, use the to periodically expire everyone's password andQuartz plugin
force them to go to a page where they update it. Keep track of the date when users change their passwords
and use a Quartz job to expire their passwords once the password is older than a fixed max age.

Here's an example for a password expired workflow. You'd need a simple action to display a password
reset form (similar to the login form):

def passwordExpired() {
 [username: session['SPRING_SECURITY_LAST_USERNAME']]
}

and the form would look something like this:

https://grails.org/plugin/quartz

73

<div id='login'>
 <div class=' '>inner
 <g: test='${flash.message}'>if
 <div class='login_message'>${flash.message}</div>
 </g: >if
 <div class='fheader'>Please update your password..</div>
 <g:form action='updatePassword' id='passwordResetForm'
 class='cssform' autocomplete='off'>
 <p>
 <label ='username'>Username</label>for
 ${username}
 </p>
 <p>
 <label ='password'>Current Password</label>for
 <g:passwordField name='password' class='text_' />
 </p>
 <p>
 <label ='password'>New Password</label>for
 <g:passwordField name='password_new' class='text_' />
 </p>
 <p>
 <label ='password'>New Password (again)</label>for
 <g:passwordField name='password_new_2' class='text_' />
 </p>
 <p>
 <input type='submit' value='Reset' />
 </p>
 </g:form>
 </div>
</div>

It's important that you not allow the user to specify the username (it's available in the HTTP session) but
that you require the current password, otherwise it would be simple to forge a password reset.

The GSP form would submit to an action like this one:

74

def updatePassword() {
 username = session['SPRING_SECURITY_LAST_USERNAME']String
 (!username) {if
 flash.message = 'Sorry, an error has occurred'
 redirect controller: 'login', action: 'auth'
 return
 }

 password = params.passwordString
 newPassword = params.password_newString
 newPassword2 = params.password_new_2String
 (!password || !newPassword || !newPassword2 ||if
 newPassword != newPassword2) {
 flash.message =
 'Please enter your current password and a valid password'new
 render view: 'passwordExpired',
 model: [username: session['SPRING_SECURITY_LAST_USERNAME']]
 return
 }

User user = User.findByUsername(username)
 (!passwordEncoder.isPasswordValid(user.password,if
 password, /*salt*/)) {null
 flash.message = 'Current password is incorrect'
 render view: 'passwordExpired',
 model: [username: session['SPRING_SECURITY_LAST_USERNAME']]
 return
 }

 (passwordEncoder.isPasswordValid(user.password, newPassword,if
 /*salt*/)) {null
 flash.message =
 'Please choose a different password from your current one'
 render view: 'passwordExpired',
 model: [username: session['SPRING_SECURITY_LAST_USERNAME']]
 return
 }

user.password = newPassword
 user.passwordExpired = false
 user.save() // you have password constraints check them hereif

redirect controller: 'login', action: 'auth'
}

User Cache

If the configuration property is set to , Spring Security caches cacheUsers true UserDetails
instances to save trips to the database. (The default is .) This optimization is minor, becausefalse
typically only two small queries occur during login -- one to load the user, and one to load the authorities.

If you enable this feature, you must remove any cached instances after making a change that affects login.
If you do not remove cached instances, even though a user's account is locked or disabled, logins succeed
because the database is bypassed. By removing the cached data, you force at trip to the database to
retrieve the latest updates.

Here is a sample Quartz job that demonstrates how to find and disable users with passwords that are too
old:

75

package com.mycompany.myapp

class ExpirePasswordsJob {

 triggers = {static
 cron name: 'myTrigger', cronExpression: '0 0 0 * * ?' // midnight daily
 }

def userCache

void execute() {

def users = User.executeQuery(
 'from User u where u.passwordChangeDate <= :cutoffDate',
 [cutoffDate: Date() - 180])new

 (user in users) {for
 // flush each separately so one failure
 // doesn't rollback all of the others
 {try
 user.passwordExpired = true
 user.save(flush:)true
 userCache.removeUserFromCache user.username
 }
 (e) {catch
 log.error "problem expiring password user $user.username :for

, e$e.message"
 }
 }
 }
}

76

12 URL Properties
The table shows configurable URL-related properties.

Property Default Value Meaning

apf.filterProcessesUrl '/j_spring_security_check'
Login form post URL, intercepted by
Spring Security filter.

apf.usernameParameter 'j_username' Login form username parameter.

apf.passwordParameter 'j_password' Login form password parameter.

apf.allowSessionCreation true
Whether to allow authentication to
create an HTTP session.

apf.postOnly true
Whether to allow only POST login
requests.

apf.continueChainBefore
SuccessfulAuthentication

false
whether to continue calling
subsequent filters in the filter chain

apf.storeLastUsername false
Whether to store the login username
in the HTTP session

fai lureHandler .
defaultFailureUrl

'/login/authfail?login_error=1' Redirect URL for failed logins.

fai lureHandler .
ajaxAuthFailUrl

'/login/authfail?ajax=true' Redirect URL for failed Ajax logins.

fai lureHandler .
exceptionMappings

none

Map of exception class name
(subclass of AuthenticationException
) to which the URL will redirect for
that exception type after
authentication failure.

failureHandler. useForward false
Whether to render the error page (

) or redirect ().true false

fai lureHandler .
allowSessionCreation

true
Whether to enable session creation to
store the authentication failure
exception

successHandler.
defaultTargetUrl

'/'
Default post-login URL if there is no
saved request that triggered the
login.

successHandler.
alwaysUseDefault

false

If , always redirects to thetrue
value of successHandler.

 afterdefaultTargetUrl
successful authentication; otherwise
redirects to to originally-requested
page.

successHandler.
targetUrlParameter

'spring-security-redirect'
Name of optional login form
parameter that specifies destination
after successful login.

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/AuthenticationException.html

77

successHandler. useReferer false
Whether to use the HTTP Referer
header to determine post-login
destination.

successHandler.
ajaxSuccessUrl

'/login/ajaxSuccess'
URL for redirect after successful
Ajax login.

auth.loginFormUrl '/login/auth' URL of login page.

auth.forceHttps false
If , redirects login pagetrue
requests to HTTPS.

auth.ajaxLoginFormUrl '/login/authAjax' URL of Ajax login page.

auth.useForward false
Whether to render the login page (

) or redirect ().true false

logout.afterLogoutUrl '/' URL for redirect after logout.

logout.filterProcessesUrl '/j_spring_security_logout'
Logout URL, intercepted by Spring
Security filter.

logout.handlerNames
['rememberMeServices',
'securityContextLogoutHandler']

Logout handler bean names. See
Logout Handlers

logout.clearAuthentication true

If removes the true
 from the Authentication
 to preventSecurityContext

issues with concurrent requests

logout.invalidateHttpSession true
Whether to invalidate the HTTP
session when logging out

logout.targetUrlParameter none
the querystring parameter name for
the post-logout URL

l o g o u t .
alwaysUseDefaultTargetUrl

false
whether to always use the

 as theafterLogoutUrl
post-logout URL

logout.redirectToReferer false
whether to use the headerReferer
value as the post-logout URL

logout.postOnly true
If only POST requests will betrue
allowed to logout

adh.errorPage '/login/denied'
Location of the 403 error page (or set
to to send a 403 error and notnull
render a page).

adh.ajaxErrorPage '/login/ajaxDenied'
Location of the 403 error page for
Ajax requests.

adh.useForward true
If a forward will be used totrue
render the error page, otherwise a
redirect is used

ajaxHeader 'X-Requested-With'
Header name sent by Ajax library,
used to detect Ajax.

ajaxCheckClosure none
An optional closure that can
determine if a request is Ajax

78

redirectStrategy.
contextRelative

false

If , the redirect URL will betrue
the value after the request context
path. This results in the loss of
protocol information (HTTP or
HTTPS), so causes problems if a
redirect is being performed to change
from HTTP to HTTPS or vice versa.

switchUser URLs
See , under Switch User

.Customizing URLs

fii.alwaysReauthenticate false
If , re-authenticates when theretrue
is a in the Authentication
SecurityContext

fii.rejectPublicInvocations true
Disallow URL access when there is
no request mapping

fii.validateConfigAttributes true
Whether to check that all

 instances areConfigAttribute
valid at startup

fii.publishAuthorizationSuccess false
Whether to publish an

 afterAuthorizedEvent
successful access check

fii.observeOncePerRequest true

If allow checks to happenfalse
multiple times, for example when
JSP forwards are being used and
filter security is desired on each
included fragment of the HTTP
request

79

13 Hierarchical Roles
Hierarchical roles are a convenient way to reduce clutter in your request mappings.

Property Default Value Meaning

roleHierarchy none Hierarchical role definition.

For example, if you have several types of 'admin' roles that can be used to access a URL pattern and you
do not use hierarchical roles, you need to specify all the admin roles:

package com.mycompany.myapp

 grails.plugin.springsecurity.annotation.Securedimport

class SomeController {

@Secured(['ROLE_ADMIN', 'ROLE_FINANCE_ADMIN', 'ROLE_SUPERADMIN'])
 def someAction() {
 …
 }
}

However, if you have a business rule that says implies being granted ROLE_FINANCE_ADMIN
, and that implies being granted , you canROLE_ADMIN ROLE_SUPERADMIN ROLE_FINANCE_ADMIN

express that hierarchy as:

grails.plugin.springsecurity.roleHierarchy = '''
 ROLE_SUPERADMIN > ROLE_FINANCE_ADMIN
 ROLE_FINANCE_ADMIN > ROLE_ADMIN
'''

Then you can simplify your mappings by specifying only the roles that are required:

package com.mycompany.myapp

 grails.plugin.springsecurity.annotation.Securedimport

class SomeController {

@Secured(['ROLE_ADMIN'])
 def someAction() {
 …
 }
}

You can also reduce the number of granted roles in the database. Where previously you had to grant
, , and , now you only need to grant ROLE_SUPERADMIN ROLE_FINANCE_ADMIN ROLE_ADMIN
.ROLE_SUPERADMIN

80

14 Switch User
To enable a user to switch from the current to another user's, set the Authentication

 attribute to . This feature is similar to the 'su' command in Unix. ItuseSwitchUserFilter true
enables, for example, an admin to act as a regular user to perform some actions, and then switch back.

This feature is very powerful; it allows full access to everything the switched-to user
can access without requiring the user's password. Limit who can use this feature by
guarding the user switch URL with a role, for example, , ROLE_SWITCH_USER

, and so on.ROLE_ADMIN

Switching to Another User

To switch to another user, typically you create a form that submits to
:/j_spring_security_switch_user

<sec:ifAllGranted roles='ROLE_SWITCH_USER'>

<form action='/j_spring_security_switch_user' method='POST'>
 Switch to user: <input type='text' name='j_username'/>

 <input type='submit' value='Switch'/>
 </form>

</sec:ifAllGranted>

Here the form is guarded by a check that the logged-in user has and is not shownROLE_SWITCH_USER
otherwise. You also need to guard the user switch URL, and the approach depends on your mapping
scheme. If you use annotations, add a rule to the controllerAnnotations.staticRules
attribute:

grails.plugin.springsecurity.controllerAnnotations.staticRules = [
 …
 '/j_spring_security_switch_user':
 ['ROLE_SWITCH_USER', 'isFullyAuthenticated()']
]

If you use s, create a rule like this (for example, in):Requestmap BootStrap

new Requestmap(url: '/j_spring_security_switch_user',
 configAttribute: 'ROLE_SWITCH_USER,isFullyAuthenticated()'
).save(flush:)true

If you use the map, add the rule there:Config.groovy

81

grails.plugin.springsecurity.interceptUrlMap = [
 …
 '/j_spring_security_switch_user':
 ['ROLE_SWITCH_USER', 'isFullyAuthenticated()']
]

Switching Back to Original User

To resume as the original user, navigate to ./j_spring_security_exit_user

<sec:ifSwitched>

 Resume as <sec:switchedUserOriginalUsername/>

</sec:ifSwitched>

Customizing URLs

You can customize the URLs that are used for this feature, although it is rarely necessary:

grails.plugin.springsecurity.switchUser.switchUserUrl = …
grails.plugin.springsecurity.switchUser.exitUserUrl = …
grails.plugin.springsecurity.switchUser.targetUrl = …
grails.plugin.springsecurity.switchUser.switchFailureUrl = ...

Property Default Meaning

useSwitchUserFilter false
Whether to use the switch
user filter.

switchUser.
switchUserUrl

'/j_spring_security_switch_user'
URL to access (via GET or
POST) to switch to another
user.

switchUser.
exitUserUrl

'/j_spring_security_exit_user'
URL to access to switch to
another user.

switchUser.
targetUrl

S a m e a s
successHandler.defaultTargetUrl

URL for redirect after
switching.

switchUser.
switchFailureUrl

S a m e a s
failureHandler.defaultFailureUrl

URL for redirect after an
error during an attempt to
switch.

switchUser.
usernameParameter

SwitchUserFilter.
SPRING_SECURITY_SWITCH_USERNAME_KEY

The username request
parameter name

GSP Code

82

One approach to supporting the switch user feature is to add code to one or more of your GSP templates.
In this example the current username is displayed, and if the user has switched from another (using the

 tag) then a 'resume' link is displayed. If not, and the user has the required role, asec:ifSwitched
form is displayed to allow input of the username to switch to:

<sec:ifLoggedIn>
Logged in as <sec:username/>
</sec:ifLoggedIn>

<sec:ifSwitched>

 Resume as <sec:switchedUserOriginalUsername/>

</sec:ifSwitched>

<sec:ifNotSwitched>
 <sec:ifAllGranted roles='ROLE_SWITCH_USER'>

<form action='${request.contextPath}/j_spring_security_switch_user'
 method='POST'>
 Switch to user: <input type='text' name='j_username'/>

 <input type='submit' value='Switch'/>
 </form>

</sec:ifAllGranted>
</sec:ifNotSwitched>

83

15 Filters
There are a few different approaches to configuring filter chains.

Default Approach to Configuring Filter Chains

The default is to use configuration attributes to determine which extra filters to use (for example, Basic
Auth, Switch User, etc.) and add these to the 'core' filters. For example, setting

 adds grails.plugin.springsecurity.useSwitchUserFilter = true
 to the filter chain (and in the correct order). The filter chain builtswitchUserProcessingFilter

here is applied to all URLs. If you need more flexibility, you can use asfilterChain.chainMap
discussed in below.chainMap

filterNames

To define custom filters, to remove a core filter from the chain (not recommended), or to otherwise have
control over the filter chain, you can specify the property as a list of strings. As with thefilterNames
default approach, the filter chain built here is applied to all URLs.

For example:

grails.plugin.springsecurity.filterChain.filterNames = [
 'securityContextPersistenceFilter', 'logoutFilter',
 'authenticationProcessingFilter', 'myCustomProcessingFilter',
 'rememberMeAuthenticationFilter', 'anonymousAuthenticationFilter',
 'exceptionTranslationFilter', 'filterInvocationInterceptor'
]

This example creates a filter chain corresponding to the Spring beans with the specified names.

chainMap

Use the attribute to define which filters are applied to different URLfilterChain.chainMap
patterns. You define a Map that specifies one or more lists of filter bean names, each with a
corresponding URL pattern.

grails.plugin.springsecurity.filterChain.chainMap = [
 '/urlpattern1/**': 'filter1,filter2,filter3,filter4',
 '/urlpattern2/**': 'filter1,filter3,filter5',
 '/**': 'JOINED_FILTERS',
]

In this example, four filters are applied to URLs matching and three different/urlpattern1/**
filters are applied to URLs matching . In addition the special token /urlpattern2/**

 is applied to all URLs. This is a conventient way to specify that all defined filtersJOINED_FILTERS
(configured either with configuration rules like or explicitly using useSwitchUserFilter

) should apply to this pattern.filterNames

The order of the mappings is important. Each URL will be tested in order from top to bottom to find the
first matching one. So you need a catch-all rule at the end for URLs that do not match one of the/**
earlier rules.

84

There's also a filter negation syntax that can be very convenient. Rather than specifying all of the filter
names (and risking forgetting one or putting them in the wrong order), you can use the

 keyword and one or more filter names prefixed with a . This means to use allJOINED_FILTERS -
configured filters except for the excluded ones. For example, if you had a web service that uses Basic
Auth for URLs, you would configure that using:/webservice/**

grails.plugin.springsecurity.filterChain.chainMap = [
 '/webservice/**': 'JOINED_FILTERS,-exceptionTranslationFilter',
 '/**':
'JOINED_FILTERS,-basicAuthenticationFilter,-basicExceptionTranslationFilter'
]

For the URLs, we want all filters except for the standard /webservice/**
 since we want to use just the one configured for Basic Auth. AndExceptionTranslationFilter

for the URLs (everything else) we want everything except for the Basic Auth filter and its/**
configured .ExceptionTranslationFilter

Additionally, you can use a configuration to declare one or more URL patterns which shouldchainMap
have no filters applied. Use the name for these patterns, e.g.'none'

grails.plugin.springsecurity.filterChain.chainMap = [
 '/someurlpattern/**': 'none',
 '/**': 'JOINED_FILTERS'
]

clientRegisterFilter

An alternative to setting the property is filterNames grails.plugin.springsecurity.
. This property allows you to add a customSpringSecurityUtils.clientRegisterFilter()

filter to the chain at a specified position. Each standard filter has a corresponding position in the chain
(see for details). So if yougrails.plugin.springsecurity. SecurityFilterPosition
have created an application-specific filter, register it in

:grails-app/conf/spring/resources.groovy

beans = {
 myFilter(com.mycompany.myapp.MyFilter) {
 // properties
 }
}

and then register it in :grails-app/conf/BootStrap.groovy

import grails.plugin.springsecurity.SecurityFilterPosition
 grails.plugin.springsecurity.SpringSecurityUtilsimport

class BootStrap {

def init = {
 SpringSecurityUtils.clientRegisterFilter(
 'myFilter', SecurityFilterPosition.OPENID_FILTER.order + 10)
 }
}

85

This bootstrap code registers your filter just after the Open ID filter (if it's configured). You cannot
register a filter in the same position as another, so it's a good idea to add a small delta to its position to put
it after or before a filter that it should be next to in the chain. The Open ID filter position is just an
example - add your filter in the position that makes sense.

86

16 Channel Security
Use channel security to configure which URLs require HTTP and which require HTTPS.

Property Default Value Meaning

portMapper.httpPort 8080 HTTP port your application uses.

portMapper.httpsPort 8443 HTTPS port your application uses.

secureChannel.definition none Map of URL pattern to channel rule

Build a Map under the key, where the keys are URL patterns, and thesecureChannel.definition
values are one of , , or REQUIRES_SECURE_CHANNEL REQUIRES_INSECURE_CHANNEL

:ANY_CHANNEL

grails.plugin.springsecurity.secureChannel.definition = [
 '/login/**': 'REQUIRES_SECURE_CHANNEL',
 '/maps/**': 'REQUIRES_INSECURE_CHANNEL',
 '/images/login/**': 'REQUIRES_SECURE_CHANNEL',
 '/images/**': 'ANY_CHANNEL'
]

URLs are checked in order, so be sure to put more specific rules before less specific. In the preceding
example, is more specific than , so it appears first in the/images/login/** /images/**
configuration.

Header checking

The default implementation of channel security is fairly simple; if you're using HTTP but HTTPS is
required, you get redirected to the corresponding SSL URL and vice versa. But when using a load
balancer such as an F5 BIG-IP it's not possible to just check secure/insecure. In that case you can
configure the load balancer to set a request header indicating the current state. To use this approach, set
the configuration property to and optionally change theuseHeaderCheckChannelSecurity true
header names or values:

grails.plugin.springsecurity.secureChannel.useHeaderCheckChannelSecurity =
true

By default the header name is "X-Forwarded-Proto" and the secure header value is "http" (i.e. if you're
not secure, redirect to secure) and the insecure header value is "https" (i.e. if you're secure, redirect to
insecure). You can change any or all of these default values though:

grails.plugin.springsecurity.secureChannel.secureHeaderName = '...'
grails.plugin.springsecurity.secureChannel.secureHeaderValue = '...'
grails.plugin.springsecurity.secureChannel.insecureHeaderName = '...'
grails.plugin.springsecurity.secureChannel.insecureHeaderValue = '...'

87

17 IP Address Restrictions
Ordinarily you can guard URLs sufficiently with roles, but the plugin provides an extra layer of security
with its ability to restrict by IP address.

Property Default Value Meaning

ipRestrictions none Map of URL patterns to IP address patterns.

For example, make an admin-only part of your site accessible only from IP addresses of the local LAN or
VPN, such as 192.168.1.xxx or 10.xxx.xxx.xxx. You can also set this up at your firewall and/or routers,
but it is convenient to encapsulate it within your application.

To use this feature, specify an configuration map, where the keys are URL patterns,ipRestrictions
and the values are IP address patterns that can access those URLs. The IP patterns can be single-value
strings, or multi-value lists of strings. They can use masks, and can specify either IPv4 or IPv6CIDR
patterns. For example, given this configuration:

grails.plugin.springsecurity.ipRestrictions = [
 '/pattern1/**': '123.234.345.456',
 '/pattern2/**': '10.0.0.0/8',
 '/pattern3/**': ['10.10.200.42', '10.10.200.63']
]

 URLs can be accessed only from the external address 123.234.345.456, URLspattern1 pattern2
can be accessed only from a 10.xxx.xxx.xxx intranet address, and URLs can be accessed onlypattern3
from 10.10.200.42 or 10.10.200.63. All other URL patterns are accessible from any IP address.

All addresses can always be accessed from localhost regardless of IP pattern, primarily to support local
development mode.

You cannot compare IPv4 and IPv6 addresses, so if your server supports both, you
need to specify the IP patterns using the address format that is actually being used.
Otherwise the filter throws exceptions. One option is to set the

 system property, for example, by adding it to java.net.preferIPv4Stack
 or as .JAVA_OPTS GRAILS_OPTS -Djava.net.preferIPv4Stack=true

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

88

18 Session Fixation Prevention
To guard against set the attribute to session-fixation attacks useSessionFixationPrevention

:true

grails.plugin.springsecurity.useSessionFixationPrevention = true

Upon successful authentication a new HTTP session is created and the previous session's attributes are
copied into it. If you start your session by clicking a link that was generated by someone trying to hack
your account, which contained an active session id, you are no longer sharing the previous session after
login. You have your own session.

Session fixation is less of a problem now that Grails by default does not include jsessionid in URLs (see
), but it's still a good idea to use this feature.this JIRA issue

Note that there is an issue when using the plugin; see for more details.cookie-session this issue

The table shows configuration options for session fixation.

Property
Default
Value

Meaning

useSessionFixationPrevention true Whether to use session fixation prevention.

sessionFixationPrevention.migrate true
Whether to copy the session attributes of the
existing session to the new session after login.

sessionFixationPrevention.alwaysCreateSession false
Whether to always create a session even if
one did not exist at the start of the request.

https://en.wikipedia.org/wiki/Session_fixation
https://jira.grails.org/browse/GRAILS-3364
https://grails.org/plugin/cookie-session
https://github.com/benlucchesi/grails-cookie-session-v2/issues/17

89

19 Logout Handlers
You register a list of logout handlers by implementing the interface. The list is calledLogoutHandler
when a user explicitly logs out.

By default, a bean is registered to clear the securityContextLogoutHandler
. Also, unless you are using Facebook or OpenID, beanSecurityContextHolder rememberMeServices

is registered to reset your cookie. (Facebook and OpenID authenticate externally so we don't have access
to the password to create a remember-me cookie.) If you are using Facebook, a

 is registered to reset its session cookies.facebookLogoutHandler

To customize this list, you define a attribute with a list of bean names.logout.handlerNames

Property Default Value Meaning

logout.handlerNames
[' r ememberMeServ ices ' ,
'securityContextLogoutHandler']

Logout handler bean
names.

The beans must be declared either by the plugin or by you in or resources.groovy
. For example, suppose you have a custom in resources.xml MyLogoutHandler

:resources.groovy

beans = {
 myLogoutHandler(com.foo.MyLogoutHandler) {
 // attributes
 }
}

You register it in as:grails-app/conf/Config.groovy

grails.plugin.springsecurity.logout.handlerNames = [
 'rememberMeServices', 'securityContextLogoutHandler', 'myLogoutHandler'
]

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/web/authentication/logout/LogoutHandler.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/context/SecurityContextHolder.html

90

20 Voters
You can register a list of voters by implementing the interface. The list confirmsAccessDecisionVoter
whether a successful authentication is applicable for the current request.

Property Default Value Meaning

voterNames ['authenticatedVoter', 'roleVoter', 'webExpressionVoter'] Bean names of voters.

By default a bean is registered to ensure users have the required roles for the request, and anroleVoter
 bean is registered to support , authenticatedVoter IS_AUTHENTICATED_FULLY

, and tokens.IS_AUTHENTICATED_REMEMBERED IS_AUTHENTICATED_ANONYMOUSLY

To customize this list, you define a attribute with a list of bean names. The beans must bevoterNames
declared either by the plugin, or yourself in resources.groovy or resources.xml. Suppose you have a
custom MyAccessDecisionVoter in resources.groovy:

beans = {
 myAccessDecisionVoter(com.foo.MyAccessDecisionVoter) {
 // attributes
 }
}

You register it in as:grails-app/conf/Config.groovy

grails.plugin.springsecurity.voterNames = [
 'authenticatedVoter', 'roleVoter',
 'webExpressionVoter', 'myAccessDecisionVoter'
]

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/access/AccessDecisionVoter.html

91

21 Miscellaneous Properties

Property Default Value Meaning

active true Whether the plugin is enabled.

printStatusMessages true
Whether to print status messages such as
"Configuring Spring Security Core ..."

rejectIfNoRule true

'strict' mode where a request mapping is
required for all resources; if maketrue
sure to allow IS_AUTHENTICATED_

 for '/', '/js/**', '/css/**',ANONYMOUSLY
'/images/**', '/login/**', '/logout/**', and
so on.

anon. key 'foo' anonymousProcessingFilter key.

atr. anonymousClass
grails.plugin.springsecurity.
authentication. GrailsAnonymous
AuthenticationToken

Anonymous token class.

useHttpSession
EventPublisher

false
If , an true HttpSession EventPublisher
will be configured.

cacheUsers false

If , logins are cached using an true
. See EhCache Account Locking and

Forcing Password Change, under User
.Cache

useSecurity
EventListener

false
I f , conf igure true

. See SecurityEventListener
.Events

dao. reflectionSalt
SourceProperty

none
Which property to use for the
reflection-based salt source. See Salted
Passwords

dao. hideUserNot
FoundExceptions

true

if , throws a new true
 if aBadCredentialsException

username is not found or the password
is incorrect, but if re-throws the false
UsernameNot FoundException
thrown by UserDetailsService
(considered less secure than throwing

 forBadCredentialsException
both exceptions)

requestCache.
createSession

true
Whether caching canSavedRequest
trigger the creation of a session.

roleHierarchy none
Hierarchical role definition. See

.Hierarchical Role Definition

voterNames
['authenticatedVoter', 'roleVoter',
'closureVoter']

Bean names of voters. See .Voters

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/web/session/HttpSessionEventPublisher.html

92

providerNames
['daoAuthenticationProvider',
'anonymousAuthenticationProvider',
'rememberMeAuthenticationProvider']

Bean names of authentication providers.
See .Authentication Providers

securityConfigType 'Annotation'

Type of request mapping to use, one of
"Annotation", "Requestmap", or
"InterceptUrlMap" (or the
corresponding enum value from

). See SecurityConfigType
Configuring Request Mappings to

.Secure URLs

controllerAnnotations.
lowercase

true
Whether to do URL comparisons using
lowercase.

controllerAnnotations.
staticRules

none
Extra rules that cannot be mapped using
annotations.

interceptUrlMap none
Request mapping definition when using
"InterceptUrlMap". See Simple Map in

.Config.groovy

registerLoggerListener false
If , registers a thattrue LoggerListener
logs interceptor-related application
events.

s c r .
allowSessionCreation

true

Whether to allow creating a session in
t h e
securityContextRepository
bean

s c r .
disableUrlRewriting

true
Whether to disable URL rewriting (and
the jsessionid attribute)

scr. springSecurity
ContextKey

HttpSessionSecurity
ContextRepository.
SPRING_SECURITY_
CONTEXT_KEY

The HTTP session key to store the
 underSecurityContext

scpf. forceEager
SessionCreation

false

Whether to eagerly create a session in
t h e
securityContextRepository
bean

sch. strategyName
SecurityContextHolder.
MODE_THREADLOCAL

The strategy to use for storing the
 - can be one of SecurityContext

, MODE_THREADLOCAL
MODE_INHERITABLETHREADLOCAL
, or , or the name of aMODE_GLOBAL
class implement ing
SecurityContextHolderStrategy

debug. useFilter false
Whether to use the toDebugFilter
log request debug information to the
console

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/access/event/LoggerListener.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/context/SecurityContextHolderStrategy.html

93

providerManager.
eraseCredentials
AfterAuthentication

true
Whether to remove the password from
the and its childAuthentication
objects after successful authentication

94

22 Tutorials

22.1 Using Controller Annotations to Secure URLs

1. Create your Grails application.

$ grails create-app bookstore
$ cd bookstore

2. Install the plugin by adding it to BuildConfig.groovy

plugins {
 …
 compile ':spring-security-core:2.0.0'
}

Run the compile script to resolve the dependencies and ensure everything is correct:

$ grails compile

3. Create the User and Role domain classes.

$ grails s2-quickstart com.testapp User Role

You can choose your names for your domain classes and package; these are just examples.

Depending on your database, some domain class names might not be valid,
especially those relating to security. Before you create names like "User" or
"Group", make sure they are not reserved keywords in your database. or escape the
name with backticks in the block, e.g.mapping

static mapping = {
 table '`user`'
}

The script creates this User class:

95

package com.testapp

 groovy.transform.EqualsAndHashCodeimport
 groovy.transform.ToStringimport

@EqualsAndHashCode(includes='username')
@ToString(includes='username', includeNames= , includePackage=)true false
class User Serializable {implements

 serialVersionUID = 1private static final long

 springSecurityServicetransient

 usernameString
 passwordString
 enabled = boolean true
 accountExpiredboolean
 accountLockedboolean
 passwordExpiredboolean

User(username, password) {String String
 ()this
 .username = usernamethis
 .password = passwordthis
 }

Set<Role> getAuthorities() {
 UserRole.findAllByUser()*.rolethis
 }

def beforeInsert() {
 encodePassword()
 }

def beforeUpdate() {
 (isDirty('password')) {if
 encodePassword()
 }
 }

 void encodePassword() {protected
 password = springSecurityService?.passwordEncoder ?
 springSecurityService.encodePassword(password) :
 password
 }

 transients = ['springSecurityService']static

 constraints = {static
 username blank: , unique: false true
 password blank: false
 }

 mapping = {static
 password column: '`password`'
 }
}

Earlier versions of the plugin didn't include password hashing logic in the domain
class, but it makes the code a lot cleaner.

and this Role class:

96

package com.testapp

 groovy.transform.EqualsAndHashCodeimport
 groovy.transform.ToStringimport

@EqualsAndHashCode(includes='authority')
@ToString(includes='authority', includeNames= , includePackage=)true false
class Role Serializable {implements

 serialVersionUID = 1private static final long

 authorityString

Role(authority) {String
 ()this
 .authority = authoritythis
 }

 constraints = {static
 authority blank: , unique: false true
 }

 mapping = {static
 cache true
 }
}

and a domain class that maps the many-to-many join class, :UserRole

package com.testapp

 grails.gorm.DetachedCriteriaimport
 groovy.transform.ToStringimport

 org.apache.commons.lang.builder.HashCodeBuilderimport

@ToString(cache= , includeNames= , includePackage=)true true false
class UserRole Serializable {implements

 serialVersionUID = 1private static final long

User user
 Role role

UserRole(User u, Role r) {
 ()this
 user = u
 role = r
 }

@Override
 equals(other) {boolean
 (!(other UserRole)) {if instanceof
 return false
 }

other.user?.id == user?.id && other.role?.id == role?.id
 }

@Override
 hashCode() {int
 def builder = HashCodeBuilder()new
 (user) builder.append(user.id)if
 (role) builder.append(role.id)if
 builder.toHashCode()
 }

 UserRole get(userId, roleId) {static long long
 criteriaFor(userId, roleId).get()
 }

97

 exists(userId, roleId) {static boolean long long
 criteriaFor(userId, roleId).count()
 }

 DetachedCriteria criteriaFor(userId, roleId) {private static long long
 UserRole.where {
 user == User.load(userId) &&
 role == Role.load(roleId)
 }
 }

 UserRole create(User user, Role role, flush =) {static boolean false
 def instance = UserRole(user: user, role: role)new
 instance.save(flush: flush, insert:)true
 instance
 }

 remove(User u, Role r, flush =) {static boolean boolean false
 (u == || r ==) if null null return false

 rowCount = UserRole.where { user == u && role == r }.deleteAll()int

 (flush) { UserRole.withSession { it.flush() } }if

rowCount
 }

 void removeAll(User u, flush =) {static boolean false
 (u ==) if null return

UserRole.where { user == u }.deleteAll()

 (flush) { UserRole.withSession { it.flush() } }if
 }

 void removeAll(Role r, flush =) {static boolean false
 (r ==) if null return

UserRole.where { role == r }.deleteAll()

 (flush) { UserRole.withSession { it.flush() } }if
 }

 constraints = {static
 role validator: { Role r, UserRole ur ->
 (ur.user == || ur.user.id ==) if null null return
 existing = boolean false
 UserRole.withNewSession {
 existing = UserRole.exists(ur.user.id, r.id)
 }
 (existing) {if
 'userRole.exists'return
 }
 }
 }

 mapping = {static
 id composite: ['user', 'role']
 version false
 }
}

The script has edited and added the configuration for yourgrails-app/conf/Config.groovy
domain classes. Make sure that the changes are correct.

These generated files are not part of the plugin - these are your application files.
They are examples to get you started, so you can edit them as you please. They
contain the minimum needed for the plugin's default implementation of the Spring
Security (which like everything in the plugin UserDetailsService is

).customizable

98

The plugin has no support for CRUD actions or GSPs for your domain classes; the
 plugin supplies a UI for those. So for now you will create roles and users in spring-security-ui

. (See step 7.)grails-app/conf/BootStrap.groovy

4. Create a controller that will be restricted by role.

$ grails create-controller com.testapp.Secure

This command creates grails-app/controllers/com/testapp/
. Add some output so you can verify that things are working:SecureController.groovy

package com.testapp

class SecureController {
 def index() {
 render 'Secure access only'
 }
}

5. Edit grails-app/conf/BootStrap.groovy to add a test user.

import com.testapp.Role
 com.testapp.Userimport
 com.testapp.UserRoleimport

class BootStrap {

def init = { servletContext ->

def adminRole = Role('ROLE_ADMIN').save()new
 def userRole = Role('ROLE_USER').save()new

def testUser = User('me', 'password').save()new

UserRole.create testUser, adminRole, true

assert User.count() == 1
 assert Role.count() == 2
 assert UserRole.count() == 1
 }
}

Some things to note about the preceding :BootStrap.groovy

The example does not use a traditional GORM many-to-many mapping for the User<->Role
relationship; instead you are mapping the join table with the class. This performanceUserRole
optimization helps significantly when many users have one or more common roles.

We explicitly flush (using the 3-arg call) because does notUserRole.create() BootStrap
run in a transaction or OpenSessionInView.

6. Start the server.

99

$ grails run-app

7. Before you secure the page, navigate to http://localhost:8080/bookstore/secure
to verify that you cannot access see the page yet. You will be redirected to the
login page, but after a successful authentication (log in with the username and
password you used for the test user in BootStrap.groovy) you will see an error
page:

Sorry, you're not authorized to view page.this

This is because with the default configuration, all URLs are denied unless there is an access rule
specified.

8. Edit grails-app/controllers/SecureController.groovy to import the annotation
class and apply the annotation to restrict (and grant) access.

package com.testapp

 grails.plugin.springsecurity.annotation.Securedimport

class SecureController {

@Secured('ROLE_ADMIN')
 def index() {
 render 'Secure access only'
 }
}

or

@Secured('ROLE_ADMIN')
class SecureController {
 def index() {
 render 'Secure access only'
 }
}

You can annotate the entire controller or individual actions. In this case you have only one action, so you
can do either.

9. Shut down the app and run again, and navigate again to grails run-app
.http://localhost:8080/bookstore/secure

This time you should again be able to see the secure page after successfully authenticating.

10. Test the Remember Me functionality.

http://localhost:8080/bookstore/secure
http://localhost:8080/bookstore/secure

100

Check the checkbox, and once you've tested the secure page, close your browser and reopen it. Navigate
again the the secure page. Because a is cookie stored, you should not need to log in again. Logout at any
time by navigating to .http://localhost:8080/bookstore/logout

11. Optionally, create a CRUD UI to work with users and roles.

Run grails generate-all for the domain classes:

$ grails generate-all com.testapp.User

$ grails generate-all com.testapp.Role

Since the User domain class handles password hashing, there are no changes required in the generated
controllers.

http://localhost:8080/bookstore/logout

101

23 Controller MetaClass Methods
The plugin registers some convenience methods into all controllers in your application. All are accessor
methods, so they can be called as methods or properties. They include:

isLoggedIn

Returns if there is an authenticated user.true

class MyController {

def someAction() {
 (isLoggedIn()) {if
 …
 }

...

 (!isLoggedIn()) {if
 …
 }

// or

 (loggedIn) {if
 …
 }

 (!loggedIn) {if
 …
 }
 }
}

getPrincipal

Retrieves the current authenticated user's Principal (a instance unless you've customizedGrailsUser
this) or if not authenticated.null

class MyController {

def someAction() {
 (isLoggedIn()) {if
 username = getPrincipal().usernameString
 …
 }

// or

 (isLoggedIn()) {if
 username = principal.usernameString
 …
 }
 }
}

getAuthenticatedUser

102

Loads the user domain class instance from the database that corresponds to the currently authenticated
user, or if not authenticated. This is the equivalent of adding a dependency injection for null

 a n d c a l l i n g springSecurityService
 (the typicalPersonDomainClassName.get(springSecurityService.principal.id)

way that this is often done).

class MyController {

def someAction() {
 (isLoggedIn()) {if
 email = getAuthenticatedUser().emailString
 …
 }

// or

 (isLoggedIn()) {if
 email = authenticatedUser.emailString
 …
 }
 }
}

103

24 Internationalization
Spring Security Core plugin is provided with i18n messages in several languages.

If you want to customize or translate the texts then add messages for the following keys to your i18n
resource bundle(s) for each exception:

Message Default Value Exception

springSecurity.errors.login.expired
"Sorry, your account has
expired."

AccountExpiredException

springSecurity.errors.login.passwordExpired
"Sorry, your password has
expired."

CredentialsExpiredException

springSecurity.errors.login.disabled
"Sorry, your account is
disabled."

DisabledException

springSecurity.errors.login.locked
"Sorry, your account is
locked."

LockedException

springSecurity.errors.login.fail
"Sorry, we were not able to
find a user with that
username and password."

Other exceptions

You can customize all messages in auth.gsp and denied.gsp:

Message Default Value

springSecurity.login.title Login

springSecurity.login.header Please Login

springSecurity.login.button Login

springSecurity.login.username.label Username

springSecurity.login.password.label Password

springSecurity.login.remember.me.label Remember me

springSecurity.denied.title Denied

springSecurity.denied.message Sorry, you're not authorized to view this page.

