Spring Security Core plugin

Spring Security Core Plugin - Reference Documentation

Authors: Burt Beckwith, Beverley Talbott
Version: 2.0.0

Table of Contents

1 Introduction to the Spring Security Plugin
1.1 Configuration Settings Now in Config.groovy
1.2 Getting Started
2 What'sNew inVersion 2.0
3 Domain Classes
3.1 Person Class
3.2 Authority Class
3.3 PersonAuthority Class
3.4 Group Class
3.5 PersonGroup Class
3.6 GroupAuthority Class
3.7 Requestmap Class
4 Configuring Request Mappingsto Secure URLs
4.1 Defining Secured Annotations
4.2 Simple Map in Config.groovy
4.3 Requestmap Instances Stored in the Database
4.4 Using Expressionsto Create Descriptive, Fine-Grained Rules
5 Helper Classes
5.1 SecurityTagLib
5.2 SpringSecurityService
5.3 SpringSecurityUtils
6 Events
6.1 Event Notification
6.2 Registering an Event Listener
6.3 Registering Callback Closures
7 User, Authority (Role), and Requestmap Properties
8 Authentication
8.1 Basic and Digest Authentication
8.2 Certificate (X509) Login Authentication

8.3 Remember-Me Cookie

8.4 Ajax Authentication
9 Authentication Providers

10
11

Custom UserDetailsService

Password and Account Protection

11.1 Password Hashing
11.2 Salted Passwords
11.3 Account Locking and Forcing Password Change

12
13
14
15
16
17
18
19
20
21
22

URL Properties
Hierarchical Roles
Switch User

Filters

Channel Security

IP Address Restrictions
Session Fixation Prevention
Logout Handlers

Voters

Miscellaneous Properties
Tutorials

22.1 Using Controller Annotations to Secure URLS

23
24

Controller MetaClass Methods
Internationalization

1 Introduction to the Spring Security Plugin

The Spring Security plugin simplifies the integration of Spring Security into Grails applications. The
plugin provides sensible defaults with many configuration options for customization. Nearly everything is
configurable or replaceable in the plugin and in Spring Security itself, which makes extensive use of
interfaces.

This guide documents configuration defaults and describes how to configure and extend the Spring
Security plugin for Grails applications.

Release History and Acknowledgment
® December 7, 2015
® 2.0.0release
* November 16, 2015
® 2.0-RCG6 release
® June4, 2015
¢ 2.0-RC5release
e July 8, 2014
¢ 2.0-RCA4release
* May 19, 2014
¢ 2.0-RC3release
¢ October 4, 2013
¢ 2.0-RC2release
¢ JRA Issues
¢ October 3, 2013
¢ 2.0-RClrelease
e April 6, 2012
® 1.2.7.3release
¢ JRA Issues
®* February 2, 2012
® 1.2.7.2release
¢ JRA Issues
® January 18, 2012
e 127.1release
¢ JRA Issues

® December 30, 2011

http://projects.spring.io/spring-security/
http://jira.grails.org/issues/?jql=project%20%3D%20GPSPRINGSECURITYCORE%20AND%20fixVersion%20%3D%20%22Grails-Spring-Security-Core%202.0%22%20ORDER%20BY%20updated%20DESC%2C%20priority%20DESC%2C%20created%20ASC
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=13100
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=13062
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=13051

® 1.2.7release

* JRA Issues
December 2, 2011

* 126release

* JRA Issues
December 1, 2011

* 125release
October 18, 2011

® 1.2A4release
October 15, 2011

* 123release
October 15, 2011

® 1.22release

¢ JRA Issues
August 17, 2011

® 1.21release

¢ JRA Issues
July 31, 2011

® 12release

* JRA Issues
May 23, 2011

* 1.13release

* JRA Issues
February 26, 2011

® 1.12release
February 26, 2011

* 111release

* JRA Issues
August 8, 2010

* 11release

* JRA Issues
August 1, 2010

* 10.1release

http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=13025
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=13024
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=12907
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=12811
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=12503
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=12502
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=11909
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=11908

* July 27, 2010

®* 10release

* JRA Issues
* July 16, 2010

®* 0.4.2release

* JRA Issues
® June 29, 2010

®* 0.4.1release

¢ JRA Issues
® June 21, 2010

®* 0O.4release

* JRA Issues
* May 12, 2010

® 0.3.1release

* JRA Issues
* May 12, 2010

® 0.3release

* JRA Issues
* May 2, 2010

® 0.2release
* April 27, 2010

® jinitial 0.1 release

This plugin is based on work done for the Acegi plugin by Tsuyoshi Y amamoto.

1.1 Configuration Settings Now in Config.groovy

The Spring Security plugin maintains its configuration in the standard Conf i g. gr oovy file. Default
values are in the plugin's gr ai | s- app/ conf/ Def aul t Securi tyConfi g. groovy file, and you
add application-specific values to the grail s-app/ conf/ Config.groovy file. The two
configurations will be merged, with application values overriding the defaults.

This structure enables environment-specific configuration such as, for example, fewer structure-restrictive
security rules during development than in production. Like any environment-specific configuration
parameters, you wrap theminan envi r onnment s block.

http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=11907
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=11906
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=11905
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=11904
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=11903
http://jira.grails.org/secure/ReleaseNote.jspa?projectId=10229&version=11902
https://grails.org/plugin/acegi/

& The plugin's configuration values all start with
grails.plugin.springsecurity to distinguish them from similarly named
options in Grails and from other plugins. You must specify all property overrides
withthegrai | s. pl ugi n. spri ngsecurity suffix. For example, you specify
the attribute passwor d. al gori t hmas:

grails.plugin.springsecurity.password. al gorithme' berypt'

inConfi g. groovy

1.2 Getting Started

Once you install the plugin, you ssmply run the initialization script, s2-quickstart, and make any required
configuration changes in Confi g. groovy. The plugin registers filters in web. xm , and aso
configures the Spring beans in the application context that implement various pieces of functionality.
Grails dependency management determines which jar filesto use.

To get started using the Spring Security plugin with your Grails application, see Tutorials.

You do not need to know much about Spring Security to use the plugin, but it can be helpful to
understand the underlying implementation. See the Spring Security documentation.

https://docs.spring.io/spring-security/site/docs/3.2.x/reference/htmlsingle/

2 What's New in Version 2.0

There are many changes in the 2.x versions of the plugin from the older approachesin 1.x.

Package changes

All classesarenow inthegrai I s. pl ugi n. spri ngsecuri ty package or a subpackage. The names
tend to correspond to the analagous Spring Security classes where appropriate, for example
Mut abl eLogout Filter IS in the
grails.plugin.springsecurity.web. authentication.| ogout package to correspond
withtheor g. spri ngf ranewor k. security. web. aut henti cati on. | ogout package.

Some of the changes were more subtle though; for example all classes in the old
grails.plugins.springsecurity packages and subpackages are now in
grails. plugin.springsecurity, only one character different. This will result in a non-trivial
upgrade process for your applications, but that is a benefit as it will hopefully point you at other important
changes you might have otherwise missed.

Configuration prefix changes

The prefix used in Confi g. groovy for the plugin's configuration settings has changed from
grails.plugins.springsecuritytograils.plugin.springsecurity.

More aggressively secure by default

In 1.x it was assumed that defaulting pages to not be secured, and configuring guarded URL s as needed,
was a more pragmatic approach. Now however, all URLSs are initially blocked unless there is a request
mapping rule, even if that rule allows all access. The assumption behind this change is that if you forget
to guard a new URL, it can take a long time to discover that users had access, whereas if you forget to
open access for allowed users when using the "pessimistic" approach, nobody can access the URL and the
error will be quickly discovered. This approach is more work, but much safer.

Thisisdescribed in more detail here.

L ogout POST only

By default only POST requests are allowed to trigger alogout. To allow GET access, add this

grails.plugin.springsecurity.logout.postOnly = fal se

berypt by default

The default password hashing algorithm is now bcrypt since it is a very robust hashing approach.
PBKDF2 issimilar and is also supported. Y ou can still use any message digest algorithm that is supported
in your JDK; see this Java page for the available algorithms.

New applications should use berypt or PBKDF2, but if you didn't change the default settings in previous
versions of the plugin and want to continue using the same algorithm, use these settings:

https://en.wikipedia.org/wiki/PBKDF2
https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html

grails.plugin.springsecurity.password. al gorithm = "SHA-256'
grails.plugin.springsecurity.password. hash.iterations =1

Session Fixation Prevention by default

Session Fixation Prevention is now enabled by default, but can be disabled with

grails.plugin.springsecurity.useSessionFi xationPrevention = fal se

@Secured annotation

As of Grails 2.0, controller actions can be defined as closures or methods, with methods being preferred.
The @Secured annotation no longer supports being defined on controller action closures, so you will need
to convert them to real methods.

Y ou can also specify the HTTP method that an annotation is defined for (e.g. when using REST). When
doing this you must explicitly namethe val ue attribute, e.g.

@secur ed(val ue=["hasRol e(' ROLE_ADM N) "], httpMet hod=' POST")
def soneMet hod() {

}

In addition, you can define a closure in the annotation which will be called during access checking. The
closure must return t r ue or f al se and has al of the methods and properties that are available when
using SpEL expressions, since the closure's del egate is set to a subclass of

WebSecurit yExpressi onRoot, and aso the Spring Applicati onCont ext as the ctx

property:

@secured(cl osure = {
assert request
assert ctx
aut henti cati on. nanme == ' adm n1'

%J)ef someMet hod() {
}

Anonymous authentication

In standard Spring Security and older versions of the plugin, there is support for an "anonymous"
authentication. This is implemented by a filter that registers a simple Aut henti cati on in the
SecurityCont ext to remove the need for null checks, since there will always be an
Aut hent i cati on available. This approach is still problematic though because the Principal of the
anonymous authentication is a String, whereas it is a User Det ai | s instance when there is a
non-anonymous authentication.

Since you still have to be careful to differentiate between anonymous and non-anonymous
authentications, the plugin now creates an anonymous Aut hent i cat i on which will be an instance of
grails.plugin.springsecurity.authentication.

Grai |l sAnonynmousAut henti cati onToken with a standard

org. spri ngfranmewor k. security. core.userdetails. User instance as its Principal. The
authentication will have asingle granted role, ROLE_ ANONYMOUS.

No HQL

Some parts of the code used HQL queries, for example in the generated User Rol e class and in
SpringSecurityService. fi ndRequest mapsByRol e. These have been replaced by "where"
gueries to make data access more portable across GORM implementatioins.

Changes in generated classes

The enabl ed property in the generated User class now defaults to t r ue. This will make creating
instances a bit more DRY':

def u = new User (username: 'ne', password: 'itsasecret').save()

If you prefer the old approach, change your generated class.

Also, the plugin includesthe gr ai | s. pl ugi n. spri ngsecurity. Logi nController.groovy
and grails.plugin.springsecurity.LogoutController.groovy controllers, and
grail s-app/views/auth.gsp and grail s-app/vi ews/ deni ed. gsp GSPs. If you had no
need previously to change these you can delete your files and the plugins files will be used instead. If you
do want to change them, copy each as needed to your application and make the required changes, and
yours will be used instead.

One small change is that there is no longer a default value for the domain class name properties (
user Lookup. user Dormai nCl assNane, aut hori ty. cl assNane, r equest Map. cl assNane
, remenber Me. per si st ent Token. domai nCl assNane). This was of little use and tended to
cause confusing error messages when there was a misconfiguration.

SecurityContextHolder strategy

You can now define the Securit yCont ext Hol der strategy. By default it is stored in a
Thr eadLocal , but you can aso configure it tousean | nher it abl eThr eadLocal to maintain the
context in new threads, or a custom «class that implements the
org. springframework. security. core.context. SecurityContextHol der Strat egy

interface. To change the strategy, set the
grails.plugin.springsecurity.sch.strategyNane config property to
" MODE_THREADL OCAL" (the default) to use a Thr eadLocal ,

" MODE_| NHERI TABLETHREADLOCAL" to use an | nheri t abl eThr eadLocal , or the name of a
class that implements Secur i t yCont ext Hol der St r at egy.

Debug filter

You can enable a "debug"” filter based on the
org. springframework. security. config.debug. DebugFi | ter class. It will log security
information at the "info" level and can help when debugging configuration issues. This should only be
enabled in development mode so consider adding the property that enables it inside an envi r onnent s
block in Confi g. gr oovy

envi ronnents {
devel opnent {
grails.logging.jul.usebridge = true
grails.plugin.springsecurity.debug.useFilter = true

production {
grails.logging.jul.usebridge = fal se

Also add the implementation class name in your Log4j configuration:

info 'grails.plugin.springsecurity.web.filter.DebugFilter'

Storing usernames in the session

In Spring Security 3.0 and earlier, the username was stored in the HTTP session under the key
"SPRING_SECURITY_LAST_USERNAME". This no longer done, but the plugin will use the old
behavior if thegrai | s. pl ugi n. springsecurity. apf.storelLast User nane setting is set to
t rue (the default isf al se). Further, the name is no longer escaped before storing, it is stored exactly
as entered by the user, so you must escape it when redisplaying to avoid XSS attacks.

@Authorities annotation

Y ou can use the new @A uthorities annotation to make your annotations more DRY . See this blog post for
a description about the motivation and implementation details. Note that the package for the annotation in
the plugin IS grails.plugin.springsecurity.annotation, not
grails. plugins.springsecurity.annotati on asdescribed inthe blog post.

Miscellaneous changes

AuthenticationDetailsSour ce

Previously you could configure the details class that was constructed by the
aut henti cati onDet ai | sSource bean by setting the

aut henti cati onDet ai | s. aut hC ass property. In Spring Security 3.2 thisisn't possible because
WebAut hent i cati onDet ai | sSour ce always returns a WebAut hent i cati onDet ai | s. But
you can still customize the details class by creating a class that implements the
AuthenticationDetailsSource interface, e.g.:

10

https://burtbeckwith.com/blog/?p=1398
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/AuthenticationDetailsSource.html

package com myconpany;

i nport javax.servlet.http. HttpServl et Request;

i mport
org. springframewor k. security. authentication. Aut henti cati onDet ai | sSour ce;

public class M/Aut henticati onDetail sSource inplenments
Aut hent i cati onDet ai | sSour ce<Ht t pSer vl et Request, MyWebAut henti cationDetail s> {

public MyWebAut henti cati onDetails buil dDetail s(HttpServl et Request context) {
/1 build a MyWebAut henti cationDetails
}

}

and registering that asthe aut hent i cat i onDet ai | sSour ce beaninr esour ces. gr oovy

i mport com myconpany. M/Aut hent i cati onDet ai | sSour ce

beans = {
aut henti cat i onDet ai | sSour ce(MyAut henti cati onDet ai | sSource) {
/'l any required properties

11

3 Domain Classes

By default the plugin uses regular Grails domain classes to access its required data. It's easy to create your
own user lookup code though, which can access the database or any other source to retrieve user and
authority data. See Custom UserDetailsService for how to implement this.

To use the standard user lookup you'll need at a minimum a 'person’ and an 'authority’ domain class. In
addition, if you want to store URL<->Role mappings in the database (this is one of multiple approaches
for defining the mappings) you need a 'requestmap’ domain class. If you use the recommended approach
for mapping the many-to-many relationship between 'person’ and 'authority,’ you also need a domain class
to map the join table.

To use the user/group lookup you'll also need a 'group’ domain class. If you are using the recommended
approach for mapping many-to-many relationship between 'person’ and 'group’ and between 'group’ and
‘authority’ you'll need a domain class for each to map the join tables. You can still additionally use
'requestmap’ with this approach.

The s2-quickstart script creates initial domain classes for you. Y ou specify the package and class names,
and it creates the corresponding domain classes. After that you can customize them as you like. You can
add unlimited fields, methods, and so on, as long as the core security-related functionality remains.

3.1 Person Class

Spring Security uses an Authentication object to determine whether the current user has the right to
perform a secured action, such as accessing a URL, manipulating a secured domain object, accessing a
secured method, and so on. This object is created during login. Typically overlap occurs between the need
for authentication data and the need to represent a user in the application in ways that are unrelated to
security. The mechanism for populating the authentication is completely pluggable in Spring Security;
you only need to provide an implementation of UserDetailsService and implement its one method,
| oadUser ByUser nane() .

By default the plugin uses a Grails 'person’ domain class to manage this data. user nane, enabl ed,
passwor d are the default names of the core required properties. You can easily plug in your own
implementation, and rename the class, package, and fields. In addition, you should define an

aut hori ti es property to retrieve roles; this can be apublic field or aget Aut hori ti es() method,
and it can be defined through atraditional GORM many-to-many or a custom mapping.

Assuming you choose com myconpany. nmyapp asyour package, and User asyour class name, you'll
generate this class:

12

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/Authentication.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/userdetails/UserDetailsService.html

package com nyconpany. nyapp

i mport groovy.transform Equal sAndHashCode
i mport groovy.transform ToStri ng

@qual sAndHashCode(i ncl udes="' user nane')
@osString(includes="usernane', includeNanes=true, includePackage=fal se)
class User inplenments Serializable {

private static final |ong serialVersionUD =1
transi ent springSecurityService

String usernane
String password
bool ean enabl ed = true
bool ean account Expi red
bool ean account Locked
bool ean passwor dExpi r ed

User (String usernane, String password) {
t his()
thi s. usernane
thi s. password

user nane
passwor d

Set <Rol e> get Aut horities() {
User Rol e. fi ndAl | ByUser (this)*.rol e
}

def beforelnsert() {
encodePasswor d()
}

def beforeUpdate() {
if (isDirty('password')) {
encodePasswor d()
}

}

protected void encodePassword() {
password = springSecurityService?. passwor dEncoder ?
springSecurityServi ce. encodePasswor d(passwor d)
passwor d

static transients = ['springSecurityService']

static constraints = {
username bl ank: fal se, unique: true
password bl ank: false

static mapping = {
password columm: ' password’

Optionally, add other properties such as emai | , fi rst Name, | ast Nanme, and convenience methods,

and so on;

13

package com nyconpany. nyapp

i mport groovy.transform Equal sAndHashCode
i mport groovy.transform ToStri ng

@qual sAndHashCode(i ncl udes="' user nane')
@osString(includes="usernane', includeNanes=true, includePackage=fal se)
class User inplenments Serializable {

private static final |ong serialVersionUD =1
transi ent springSecurityService

String usernane
String password
bool ean enabl ed = true
String enuil
String firstName
String | ast Nane
bool ean account Expi red
bool ean account Locked
bool ean passwor dExpi red

User (String usernane, String password) {
t his()
thi s. username = usernane
t hi s. password = password
}
def soneMet hod {
}

Set <Rol e> get Aut horities() {
User Rol e. fi ndAl | ByUser (this)*.rol e
}

def beforelnsert() {
encodePasswor d()
}

def beforeUpdate() {
if (isDirty('password')) {
encodePasswor d()
}

}

protected voi d encodePassword() {
password = springSecurityService?. passwor dEncoder ?
springSecurityService. encodePasswor d(passwor d)
passwor d

}

static transients = ['springSecurityService']

static constraints = {
username bl ank: fal se, unique: true
password bl ank: false

static mapping = {
password columm: ' password’

The getAuthorities() method is analagous to defining static hasMany
[authorities: Authority] in a traditional many-to-many mapping. This way
Gor mUser Det ai | sServi ce can cal user. aut horities during login to retrieve the rol
without the overhead of a bidirectional many-to-many mapping.

The class and property names are configurable using these configuration attributes:

es

14

userL ookup.userDomainClassName none User class name

userL ookup.usernamePropertyName ‘username’ User class username field
userL ookup.passwordPropertyName 'password' User class password field
userL ookup.authoritiesPropertyName ‘authorities User classrole collection field
userL ookup.enabledPropertyName ‘enabled’ User class enabled field

userL ookup.accountExpiredPropertyName 'accountExpired’ User class account expired field

userL ookup.accountL ockedPropertyName 'accountLocked’ User class account locked field

userL ookup.passwordExpiredPropertyName 'passwordExpired’ User class password expired field

userL ookup.authorityJoinClassName '‘PersonAuthority’ User/Role many-many join class name

3.2 Authority Class

The Spring Security plugin also requires an 'authority' class to represent a user's role(s) in the application.
In general this class restricts URL s to users who have been assigned the required access rights. A user can
have multiple roles to indicate various access rights in the application, and should have at least one. A
basic user who can access only non-restricted resources but can still authenticate is a bit unusual. Spring
Security usually functions fine if a user has no granted authorities, but fails in a few places that assume
one or more. So if a user authenticates successfully but has no granted roles, the plugin grants the user a
'virtual' role, ROLE_NO_RCLES. Thus the user satisfies Spring Security's requirements but cannot access
secure resources, as you would not associate any secure resources with thisrole.

Like the 'person’ class, the 'authority’ class has a default name, Aut hor i ty, and a default name for its
one required property, aut hori ty. If you want to use another existing domain class, it simply has to
have a property for name. As with the name of the class, the names of the properties can be whatever you
want - they're specified ingr ai | s- app/ conf/ Confi g. gr oovy.

Assuming you choose com nyconpany. myapp asyour package, and Rol e as your class name, you'll
generate this class:

15

package com nyconpany. myapp

i mport groovy.transform Equal sAndHashCode
i mport groovy.transform ToString

@qual sAndHashCode(i ncl udes="aut hority")
@osString(includes="authority', includeNanes=true, includePackage=fal se)
class Role inplenments Serializable {

private static final |long serial VersionUD =1
String authority

Rol e(String authority) {
t his()
this.authority = authority
}

static constraints = {
authority bl ank: false, unique: true

}

static mapping = {
cache true

}
}

The class and property names are configurable using these configuration attributes:

authority.className none Role class name

authority.nameField 'authority’ Role classrole namefield

& Role names must start with "ROLE_". This is configurable in Spring Security, but
not in the plugin. It would be possible to allow different prefixes, but it's important
that the prefix not be blank as the prefix is used to differentiate between role names
and tokens such as IS AUTHENTICATED_FULLY,
IS AUTHENTICATED_ANONYMOUSLY, etc., and SpEL expressions.

The role names should be primarily an internal implementation detail; if you want to
display friendlier namesin a Ul, it's simple to remove the prefix first.

3.3 PersonAuthority Class

The typical approach to mapping the relationship between 'person’ and 'authority' is a many-to-many.
Users have multiple roles, and roles are shared by multiple users. This approach can be problematic in
Grails, because a popular role, for example, ROLE _USER, will be granted to many users in your
application. GORM uses collections to manage adding and removing related instances and maps
many-to-many relationships bidirectionally. Granting a role to a user requires loading all existing users
who have that role because the collection is a Set . So even though no unigueness concerns may exist,
Hibernate loads them all to enforce uniqueness. The recommended approach in the plugin is to map a
domain class to the join table that manages the many-to-many, and using that to grant and revoke roles to
uSers.

Like the other domain classes, this class is generated for you, so you don't need to deal with the details of
mapping it. Assuming you choose com myconpany. nyapp as your package, and User and Rol e as
your class names, you'll generate this class:

16

17

package com nyconpany. nyapp

import grails.gorm DetachedCriteria
i mport groovy.transform ToStri ng

i nport org.apache. cormons. | ang. bui | der. HashCodeBui | der

@oString(cache=true, includeNanes=true, includePackage=fal se)
class UserRol e inplenents Serializable {

private static final |ong serial VersionUD =1

User user
Rol e rol e

User Rol e(User u, Role r) {
this()
user
role

u
r

@verride
bool ean equal s(other) {
if (!(other instanceof UserRole)) {
return false

}
other.user?.id == user?.id &
other.role?.id == role?.id
@verride

i nt hashCode() {
def buil der = new HashCodeBui | der ()
if (user) builder.append(user.id)
if (role) builder.append(role.id)
bui | der . t oHashCode()

}

static UserRole get(long userld, long roleld) {
criteriaFor(userld, roleld).get()
}

static bool ean exists(long userld, long roleld) {
criteriaFor(userld, roleld).count()
}

private static DetachedCriteria criteriaFor(long userld, long roleld) {
User Rol e. where {
user == User.|load(userld) &&
role == Rol e. | oad(rol eld)
}
}

static UserRole create(User user, Role role, boolean flush = false) {
def instance = new UserRol e(user: user, role: role)
i nstance. save(flush: flush, insert: true)

i nstance
}
static bool ean renmove(User u, Role r, boolean flush = false) {
if (u==mnull || r == null) return fal se

int ronCount = UserRole.where { user == u & role ==r }.deleteAl()
if (flush) { UserRole.withSession { it.flush() } }

r owCount
}
static void renoveAll (User u, boolean flush = fal se) {
if (u==null) return
User Rol e. where { user == u }.deleteAll ()

i f %flush) { UserRole.withSession { it.flush() } }

static void renoveAll (Role r, boolean flush = fal se) {
if (r == null) return

UserRol e.where { role ==r1 }.deleteAl ()
if (flush) { UserRole.withSession { it.flush() } }
}

static constraints = {
role validator: { Role r, UserRole ur ->
if (ur.user == null || ur.user.id == null) return
bool ean existing = fal se
User Rol e. wi t hNewSessi on {
exi sting = UserRol e. exi sts(ur.user.id, r.id)

}
if (existing) {
return 'userRol e. exi sts'

}
}
}
static mapping = {
id conposite: ['"user', "role']
version fal se
}

The helper methods make it easy to grant or revoke roles. Assuming you have already |oaded a user and a
role, you grant the role to the user as follows:

User user
Rol e rol e
User Rol e. create user, role

Or

by using the 3-parameter version to trigger aflush:

User user
Rol e rol e
User Rol e. create user, role, true

Revoking aroleis similar:

User user
Rol e rol e
User Rol e. renpve user, role

Or:

User user
Rol e rol e
User Rol e. renove user, role, true

The class name is the only configurable attribute:

18

userL ookup.authorityJoinClassName 'PersonAuthority’ User/Role many-many join class name

3.4 Group Class

This Spring Security plugin provides you the option of creating an access inheritance level between
'person’ and "authority': the 'group’. The next three classes you will read about (including this one) are only
used in a'person’/'group’/‘authority’ implementation. Rather than giving a 'person’ authorities directly, you
can create a 'group’, map authorities to it, and then map a 'person’ to that 'group’. For applications that
have a one or more groups of users who need the same level of access, having one or more 'group’
instances makes managing changes to access levels easier because the authorities that make up that access
level are encapsulated in the 'group’, and a single change will affect al of the users.

If you run the s2-quickstart script with the group name specified and use com nyconpany. nyapp as
your package and Rol eG oup and Rol e asyour class hames, you'll generate this class:

package com nyconpany. myapp

i mport groovy.transform Equal sAndHashCode
i mport groovy.transform ToString

@qual sAndHashCode(i ncl udes="' nane')
@oString(includes='name', includeNanes=true, includePackage=fal se)
class Rol eGoup inplenments Serializable {

private static final long serial VersionUD =1
String nane

Rol eGroup(String name) {
this()
this. name = nane

}

Set <Rol e> get Aut horities() {
Rol eGr oupRol e. fi ndAl | ByRol eG oup(this)*.rol e
}

static constraints = {
nane bl ank: fal se, unique: true
}

static mapping = {
cache true
}

}

When running the s2-quickstart script with the group name specified, the ‘person’ class will be generated
differently to accommodate the use of groups. Assuming you use com nyconpany. nyapp as your
package and User and Rol eGr oup as your class names, the get Aut horiti es() method will be
generated like so:

Set <Rol eGroup> get Aut horities() {
User Rol eG oup. fi ndAl | ByUser (this).collect { it.roleGoup }
}

19

The plugin assumes the attribute aut hori t i es will provide the ‘authority' collection for each class, but
you can change the field namesin gr ai | s- app/ conf/ Confi g. gr oovy. You also must ensure that
the property useRol eGr oups issettot rue in order for Gor mUser Det ai | sSer vi ce to properly
attaintheaut hori ti es.

useRoleGroups fase true oSS authgrlty group |mplementat|on

when loading user authorities
authority. aull authorities AuthorityGroup class role collection
groupA uthorityNameField field

3.5 PersonGroup Class

The typical approach to mapping the relationship between 'person’ and 'group’ is a many-to-many. In a
standard implementation, users have multiple roles, and roles are shared by multiple users. In a group
implementation, users have multiple groups, and groups are shared by multiple users. For the same reason
we would use a join class between ‘person’ and ‘authority’, we should use one between 'person’ and
'group’. Please note that when using groups, there should not be a join class between 'person’ and
‘authority’, since 'group’ resides between the two.

If you run the s2-quickstart script with the group name specified, this class will be generated for you, so
you don't need to deal with the details of mapping it. Assuming you choose com nyconpany. nyapp
as your package, and User and Rol eGr oup asyour class names, you'll generate this class:

package com nyconpany. myapp

i mport grails.gorm DetachedCriteria
i mport groovy.transform ToString

i mport org.apache. commons. | ang. bui | der. HashCodeBui | der

@oString(cache=true, includeNanmes=true, includePackage=fal se)
cl ass UserRol eG oup inplenments Serializable {

private static final |long serial VersionU D =1

User user
Rol eG oup rol eG oup

User Rol eGroup(User u, RoleGoup rg) {
t his()

user = u
roleGoup =rg
}
@verride

bool ean equal s(other) {
if (!(other instanceof UserRol eG oup)) {
return false

}
other.user?.id == user?.id &&
other.roleGoup?.id == rol eGoup?.id
}
@verride

i nt hashCode() {
def buil der = new HashCodeBui | der ()
if (user) builder.append(user.id)
if (roleGoup) builder.append(rol eG oup.id)
bui | der . t oHashCode()

}

20

static UserRol eGoup get(long userld, long roleGoupld) {
criteriaFor(userld, roleGoupld).get()

static bool ean exists(long userld, |long roleGoupld) {
criteriaFor(userld, roleG oupld).count()
}

private static DetachedCriteria criteriaFor(long userld, long roleGoupld) {
User Rol eG oup. where {
user == User.|load(userld) &&
rol eGoup == Rol eG oup. | oad(r ol eG oupl d)

}

static UserRol eGoup create(User user, RoleG oup roleG oup,
bool ean flush = false) {
def instance = new User Rol eG oup(user: user, roleGoup: roleG oup)
i nstance. save(flush: flush, insert: true)

i nstance
}
static bool ean renpbve(User u, RoleGoup rg, boolean flush = false) {
if (u==mnull || rg ==null) return fal se

i nt rowCount = User Rol eGroup. where { user == u & & roleGoup == rg
}.deleteAll ()

if (flush) { UserRol eGoup.withSession { it.flush() } }

r onCount
}
static void renoveAll (User u, boolean flush = fal se) {
if (u==null) return

User Rol eG oup. where { user == u }.deleteAll ()
if (flush) { UserRol eGoup.w thSession { it.flush() } }
}

static void renoveAl |l (Rol eGoup rg, boolean flush = false) {
if (rg == null) return

User Rol eG oup. where { roleGoup == rg }.deleteAll()
if (flush) { UserRol eGoup.withSession { it.flush() } }
}

static constraints = {
user validator: { User u, UserRol eGoup ug ->
if (ug.roleGoup == null || ug.roleGoup.id == null) return
bool ean existing = fal se
User Rol eGr oup. wi t hNewSessi on {
exi sting = UserRol eG oup. exi sts(u.id, ug.roleGoup.id)

}
if (existing) {
return 'user G oup. exi sts'

}
}
}
static mapping = {
id conposite: ['roleGoup', 'user']
version fal se
}

3.6 GroupAuthority Class

21

The typical approach to mapping the relationship between 'group’ and 'authority’ is a many-to-many. In a
standard implementation, users have multiple roles, and roles are shared by multiple users. In a group
implementation, groups have multiple roles and roles are shared by multiple groups. For the same reason
we would use a join class between 'person’ and ‘authority’, we should use one between 'group’ and
‘authority'.

If you run the s2-quickstart script with the group name specified, this class will be generated for you, so
you don't need to deal with the details of mapping it. Assuming you choose com nyconpany. nyapp
asyour package, and Rol eGr oup and Rol e asyour class names, you'll generate this class:

package com nyconpany. nyapp

import grails.gormDetachedCriteria
i mport groovy.transform ToString

i mport org.apache. commons. | ang. bui | der . HashCodeBui | der

@oString(cache=true, includeNanes=true, includePackage=fal se)
cl ass Rol eG oupRol e inplenments Serializable {

private static final Iong serial VersionUD =1

Rol eGroup rol eGroup

Rol e rol e
Rol eGr oupRol e(Rol eGroup g, Role r) {
this()
roleGoup =g
role =r
}
@verride

bool ean equal s(other) {
if (!(other instanceof Rol eG oupRole)) {
return false

}
other.role?.id == role?.id &
other.roleGoup?.id == rol eGoup?.id
}
@verride

i nt hashCode()
def buil der = new HashCodeBui | der ()
if (roleGoup) builder.append(rol eG oup.id)
if (role) builder.append(role.id)
bui | der .t oHashCode()

}

static Rol eGoupRol e get(long roleGoupld, long roleld) {
criteriaFor(roleGoupld, roleld).get()
}

static bool ean exists(long roleGoupld, long roleld) {
criteriaFor(roleGoupld, roleld).count()
}

private static DetachedCriteria criteriaFor(long roleGoupld, long roleld) {
Rol eGr oupRol e. where {
rol eGoup == Rol eGoup. | oad(rol eG oupld) &&
role == Rol e. | oad(rol eld)

}
}

static Rol eG oupRol e create(Rol eGoup rol eGoup, Role role,
bool ean flush = false) {
def instance = new Rol eG oupRol e(rol eG oup: roleGoup, role: role)
i nstance. save(flush: flush, insert: true)

i nstance
}
static bool ean renpbve(Rol eGoup rg, Role r, boolean flush = false) {
if (rg=mnull || r == null) return fal se

22

int rowCount = Rol eGroupRol e.where { roleGoup ==rg & role ==r
}.del eteAll ()

if (flush) { RoleGoupRole.withSession { it.flush() } }

r owCount
}
static void renoveAll (Role r, boolean flush = false) {
if (r == null) return

Rol eGroupRol e. where { role ==r }.deleteAll ()
if (flush) { RoleGoupRole.withSession { it.flush() } }
}

static void renoveAl |l (Rol eGroup rg, boolean flush = false) {
if (rg == null) return

Rol eG oupRol e. where { roleGoup == rg }.deleteAll()
if (flush) { RoleG oupRole.withSession { it.flush() } }
}

static constraints = {
role validator: { Role r, RoleGoupRole rg ->
if (rg.roleGoup == null || rg.roleGoup.id == null) return
bool ean existing = fal se
Rol eGr oupRol e. wi t hNewSessi on {
exi sting = Rol eGoupRol e. exi sts(rg.rol eGoup.id, r.id)

}
if (existing) {
return 'rol eG oup. exi sts'

}
}
}
static mapping = {
id conposite: ['roleGoup', 'role']
version false
}

}

3.7 Requestmap Class

Optionally, use this class to store request mapping entries in the database instead of defining them with
annotations or in Conf i g. gr oovy. This option makes the class configurable at runtime; you can add,
remove and edit rules without restarting your application.

requestM ap.className none requestmap class name
requestMap.urlField 'url’ URL pattern field name
requestMap.

configAttributeField configAttribute' authority pattern field name

requestMap.
httpM ethodField

HTTP method field name (optional, does not have to exist in

httpMethod the class if you don't require URL/method security)

Assuming you choose com nmyconpany. nyapp as your package, and Request map as your class
name, you'll generate this class:

23

package com myconpany. nyapp
i mport org.springfranmework. http. H t pMet hod

i mport groovy.transform Equal sAndHashCode
i nport groovy.transform ToStri ng

@qual sAndHashCode(i ncl udes=[' confi gAttribute', 'httpMethod' , "url'])
@osString(includes=['"configAttribute', 'httpMethod' , 'url'], cache=true,
i ncl udeNanes=t rue, includePackage=fal se)

cl ass Requestmap inplenents Serializable {

private static final long serial VersionU D =1

String configAttribute
Ht t pMet hod htt pMet hod
String url

Request map(String url, String configAttribute,
Ht t pMet hod htt pMethod = null) {

t his()

this.configAttribute = configAttribute
this. httpMethod = httpMethod

this.url = url

}

static constraints = {
configAttribute bl ank: false
htt pMet hod nul | abl e: true
url bl ank: false, unique: 'httpMethod'

}

static mapping = {
cache true
}

}

To use Requestmap entries to guard URLs, see Requestmap Instances Stored in the Database.

24

4 Configuring Request Mappings to Secure URLS

Y ou can choose among the following approaches to configuring request mappings for secure application
URLSs. The goal isto map URL patterns to the roles required to access those URLs.

® @secur ed annotations (default approach)

* AsmpleMapinConfig. groovy

® Request map domain class instances stored in the database

You can only use one method at atime. You configure it with the securi t yConfi gType attribute;
the value hasto be an Secur i t yConf i gType enum value or the name of the enum as a String.

Pessimistic Lockdown

Many applications are mostly public, with some pages only accessible to authenticated users with various
roles. In this case, it might make sense to leave URLSs open by default and restrict access on a
case-by-case basis. However, if your application is primarily secure, you can use a pessimistic lockdown
approach to deny access to all URLSs that do not have an applicable URL-Role request mapping. But the
pessimistic approach is safer; if you forget to restrict access to a URL using the optimistic approach, it
might take a while to discover that unauthorized users can access the URL, but if you forget to allow
access when using the pessimistic approach, no user can access it and the error should be quickly
discovered.

The pessimistic approach is the default, and there are two configuration options that apply. If
rej ectl fNoRul e istrue (the default) then any URL that has no request mappings (an annotation,
entry in control | er Annot ati ons. stati cRul es ori ntercept Ul Map, or a Request nap
instance) will be denied to all users. The other optionisfii.reject Publiclnvocations andif it
ist rue (the default) then un-mapped URLs will trigger an | | | egal Ar gunment Except i on and will
show the error page. Thisis uglier, but more useful because it's very clear that there is a misconfiguration.
Whenfii.rejectPubliclnvocationsisfal sebutrejectlfNoRul eistrue youjust see
the "Sorry, you're not authorized to view this page.” error 403 message.

Note that the two settings are mutually exclusive. If reject|fNoRule is true then
fii.rejectPubliclnvocati ons isignored because the request will transition to the login page or
the error 403 page. If you want the more obvious error page, set fii . rej ect Publ i cl nvocati ons
totrueandrejectlfNoRul etof al se toallow that check to occur.

To reject un-mapped URLs with a 403 error code, use these settings (or none sincer ej ect | f NoRul e
defaultstot rue)

grails.plugin.springsecurity.rejectlfNoRule = true
grails.plugin.springsecurity.fii.rejectPubliclnvocations = false

and to reject with the error 500 page, use these (optionally omit r ej ect Publ i cl nvocat i ons sinceit
defaultstot r ue):

grails.plugin.springsecurity.rejectlfNoRule = fal se
grails.plugin.springsecurity.fii.rejectPubliclnvocations = true

25

Note that if you set rej ect | f NoRul e or rej ect Publ i cl nvocati ons totrue you'll need to
configurethe st at i cRul es map to include URLs that can't otherwise be guarded:

grails.plugin.springsecurity.controllerAnnotations.staticRules = [
e "permtAll"],
"/index": "permtAl"],
"/index.gsp': "permtAll"],
'/ assets/**': "permtAl"],
"IEE[js)FE "perm tAll"],
"[**[css/** "permtAl"],
"[**[i mages/ **' "perm tAll"],
"/**/favicon.ico': ['permitAll’

]

This is needed when using annotations; if you use the

grails.plugin.springsecurity.interceptU | Map mapin Confi g. groovy you'll need
to add these URL s too, and likewise when using Request nap instances. If you don't use annotations,
you must add rules for the login and logout controllers also. You can add Requestmaps manually, or in
BootStrap.groovy, for example:

for (String url in [
“/', 'lindex', '/index.gsp', '/**/favicon.ico',
YUER[js/*Rx [**[css/ x| [**[i mages/ **'
"/login', "/login.*", "/login/*",
"/logout', "/logout.*" , "/logout/*']) {
new Requestmap(url: url, configAttribute: 'permitAll"').save()

}

The analogous interceptUrlMap settings would be:

grails.plugin.springsecurity.interceptUl Mp = [
oA "permtAl'],
"/index': "permtAl"],
"/index. gsp': "permtAl"'],
'/ assets/**': "permtAl"],
A ST "permtAl"'],
"[**[css[**" "permtAl"],
"[**[i mages/ **' : "permtAl"'],
"/**[favicon.ico': "permtAl"],
"/login/**": "permtAl"'],
"/l ogout/**": "perm tAll'

]

In addition, when you enable the switch-user feature, you'll have to specify access rules for the associated
URLs, e.g.

"/j_spring_security switch_user': ['ROLE_ADM N],
"/] _spring_security exit_user': ["permtAIl"]

URLs and Authorities

26

27

In each approach you configure a mapping for a URL pattern to the role(s) that are required to access
those URLS, for example, / adm n/ user/ ** requires ROLE_ADM N. In addition, you can combine the
role(s) with tokens such as IS AUTHENTICATED_ANONYMOUSLY,
IS AUTHENTICATED_REMEMBERED, and IS AUTHENTICATED_FULLY. One or more Voters
will process any tokens and enforce a rule based on them:

® | S_AUTHENTI CATED_ANONYMOUSLY

®* signifies that anyone can access this URL. By default the
AnonynousAut henti cati onFi | t er ensures an 'anonymous Aut henti cati on with
no roles so that every user has an authentication. The token accepts any authentication, even
anonymous.

® | S _AUTHENTI CATED REMEMBERED
® requiresthe user to be authenticated through a remember-me cookie or an explicit login.
® | S AUTHENTI CATED FULLY

® requiresthe user to be fully authenticated with an explicit login.

With I S_AUTHENTI CATED_FULLY you can implement a security scheme whereby users can check a
remember-me checkbox during login and be auto-authenticated each time they return to your site, but
must still log in with a password for some parts of the site. For example, alow regular browsing and
adding items to a shopping cart with only a cookie, but require an explicit login to check out or view
purchase history.

For more information on | S_AUTHENTI CATED _FULLY, | S_AUTHENTI CATED REMEMBERED, and
I S_AUTHENTI CATED ANONYMOUSLY, see the Javadoc for AuthenticatedV oter

@ The plugin isn't compatible with Grails <g: act i onSubmi t > tags. These are used
in the autogenerated GSPs that are created for you, and they enable having multiple
submit buttons, each with its own action, inside a single form. The problem from the
security perspective is that the form posts to the default action of the controller, and
Grails figures out the handler action to use based on the act i on attribute of the
acti onSubm t tag. So for example you can guard the/ per son/ del et e witha
restrictive role, but given thistypical edit form:

<g:fornp

QQ: actionSubmt class="save" action="update"
val ue=' Update' />

<g: actionSubnit class="del ete" action="del ete"
val ue=""Del ete' />
</g:fornp

both actions will be allowed if the user has permission to access the
/ per son/ i ndex url, which would often be the case.

The workaround is to create separate forms without using act i onSubm t and
explicitly set the acti on on the <g: f or n»> tags, which will result in form
submissions to the expected urls and properly guarded urls.

Comparing the Approaches

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/access/vote/AuthenticatedVoter.html

Each approach has its advantages and disadvantages. Annotations and the Conf i g. gr oovy Map are
less flexible because they are configured once in the code and you can update them only by restarting the
application (in prod mode anyway). In practice this limitation is minor, because security mappings for
most applications are unlikely to change at runtime.

On the other hand, storing Request map entries enables runtime-configurability. This approach gives
you a core set of rules populated at application startup that you can edit, add to, and delete as needed.
However, it separates the security rules from the application code, which is less convenient than having
the rules defined in grai | s-app/ conf/ Confi g. groovy or in the applicable controllers using
annotations.

URLs must be mapped in Ilowercase if you use the Requestmap or
grail s-app/ conf/ Config.groovy map approaches. For example, if you have a
FooBarController, its urls will be of the form /fooBar/list, /fooBar/create, and so on, but these must be
mapped as /foobar/, /foobar/list, /foobar/create. This mapping is handled automatically for you if you use
annotations.

4.1 Defining Secured Annotations

You can use an @secur ed annotation (either the standard
org.springfranmework. security. access. annotation. Secured or the plugin's
grails. plugin.springsecurity.annotation. Secured which aso works on controller
closure actions) in your controllers to configure which roles are required for which actions. To use
annotations, specify securi t yConfi gType="Annot ati on", or leave it unspecified because it's the
default:

grails.plugin.springsecurity.securityConfigType = "Annotation"

You can define the annotation at the class level, meaning that the specified roles are required for all
actions, or at the action level, or both. If the class and an action are annotated then the action annotation
values will be used since they're more specific.

For example, given this controller:

package com myconpany. nyapp
i mport grails.plugin.springsecurity.annotation. Secured
cl ass SecureAnnot atedControl |l er {

@ecured([' ROLE_ADM N 1)
def index() {
render 'you have ROLE ADM N
}

@ecured([' ROLE_ ADM N , ' ROLE_SUPERUSER])
def adm nEither() {
render 'you have ROLE_ADM N or SUPERUSER
}

def anybody() {
render 'anyone can see this' // assuming you're not using "strict" node,
otherwi se the action is not viewabl e by anyone

}
}

28

you must be authenticated and have ROLE_ADM N to see / myapp/ secur eAnnot at ed (or
[myapp/ secur eAnnot at ed/ i ndex) and be authenticated and have ROLE_ADM N or
ROLE_SUPERUSER to see / nyapp/ secur eAnnot at ed/ adm nEi t her. Any user can access
/ myapp/ secur eAnnot at ed/ anybody if you have disabled "strict® mode (using

rej ect | f NoRul e), and nobody can access the action by default since it has no access rule configured.

In addition, you can define a closure in the annotation which will be called during access checking. The
closure must return t r ue or f al se and has al of the methods and properties that are available when
using SpEL expressions, since the closure's del egate is set to a subclass of

WebSecurit yExpressi onRoot, and aso the Spring Applicati onCont ext as the ctx

property:

@decured(cl osure = {
assert request
assert ctx
aut henti cati on. name == 'adm nl'

ééf someMet hod() {
} -

Often most actions in a controller require similar access rules, so you can also define annotations at the
classleve:

package com nyconpany. nyapp
i mport grails.plugin.springsecurity.annotation. Secured

@ecured([' ROLE_ADM N 1)
cl ass Secur eC assAnnot at edControl | er {

def index() {
render 'index: you have ROLE_ADM N
}

def otherAction() {
render 'otherAction: you have ROLE_ADM N
}

@ecur ed(["' ROLE_SUPERUSER)
def super() {
render 'super: you have ROLE SUPERUSER
}

}

Here you need to be authenticated and have ROLE_ADM N to see

/ myapp/ secur eCl assAnnot ated (or /nyapp/ secureC assAnnot at ed/ i ndex) or

/ myapp/ secur eCl assAnnot at ed/ ot her Act i on. However, you must have ROLE_SUPERUSER
to access / myapp/ secur eCl assAnnot at ed/ super . The action-scope annotation overrides the
class-scope annotation. Note that "strict” mode isn't applicable here since al actions have an access rule
defined (either explicitly or inherited from the class-level annotation).

Securing RESTful domain classes

Since Grails 2.3, domain classes can be annotated with the grails.rest. Resource AST
transformation, which will generate internally a controller with the default CRUD operations.

29

Y ou can also use the @ecur ed annotation on such domain classes:

@Resour ce
@ecured(' ROLE_ADM N)
class Thing {

String nane

Additionally, you can specify the HTTP method that is required in each annotation for the access rule,
e.g.

package com myconpany. nyapp
i mport grails.plugin.springsecurity.annotation. Secured

cl ass SecureAnnot atedControl |l er {

@ecured(value = [' ROLE ADM N], httpMethod = 'GET")
def create() {
}

@ecured(value = [' ROLE ADM N], httpMethod = ' POST')

def save() {

}
}

Here you must have ROLE_ADMIN for both the cr eat e and save actions but cr eat e requires a
GET request (since it renders the form to create a new instance) and save requires POST (sinceit's the
action that the form posts to).

controllerAnnotations.staticRules

You can also define 'static' mappings that cannot be expressed in the controllers, such as '/**" or for
JavaScript, CSS, or image URLs. Usethe cont rol | er Annot ati ons. st ati cRul es property, for
example:

grails.plugin.springsecurity.controllerAnnotations.staticRules = [

“/jsladmin/**': ['ROLE ADMN |,
"/ someplugin/**': [' ROLE_ADM N]
]

This example maps all URL s associated with SonePl ugi nCont r ol | er , which has URLs of the form
/ somePl ugi n/. .., to ROLE_ADM N; annotations are not an option here because you would not edit
plugin code for a change like this.

30

£ When mapping URLSs for controllers that are mapped in Ur | Mappi ngs. gr oovy,
you need to secure the un-url-mapped URLs. For example if you have a
FooBarController that you mapto/ f oo/ bar/ $act i on, you must register that in
control | er Annot ati ons. stati cRul es as/ foobar/**. Thisisdifferent

than the mapping you would use for the other two approaches and is necessary
because control | er Annot ati ons. stati cRul es entries are treated as if

they were annotations on the corresponding controller.

4.2 Simple Map in Config.groovy

To use the Config.groovy Map to secure URLs, first specify
securityConfigType="Intercept Ul Map":

grails.plugin.springsecurity.securityConfigType = "InterceptU | Map"

DefineaMapin Confi g. gr oovy:

grails.plugin.springsecurity.interceptUl Mp = [
B "permtAl'],
"/index": "perm tAll"
"/index.gsp': "permtAll’
'/ assets/**'; "permtAll'
Bl =Y "permtAll’
"[**[css/**' "permtAll'
"[**[i mages/ **' "permtAll’
"/**/favicon.ico": "perm tAll"
"/login/**": "permtAll’
"/l ogout/**": "permtAl"'],
"/ securel **': '"ROLE_ADM N 1],
"/finance/**": "ROLE_FI NANCE', 'isFullyAuthenticated()'],
]

When using this approach, make sure that you order the rules correctly. The first applicable rule is used,
so for example if you have a controller that has one set of rules but an action that has stricter access rules,

e.g.

"/ securel**': [' ROLE_ADM N, 'ROLE_SUPERUSER],
"/ securel/real l ysecure/**': ['ROLE_SUPERUSER]

then this would fail - it wouldn't restrict accessto / secur e/ real | ysecure/ |l i st to auser with
ROLE_SUPERUSER since the first URL pattern matches, so the second would be ignored. The correct
mapping would be

"/securel/real l ysecure/ **': [' ROLE_SUPERUSER]
'/ secure/ **": [' ROLE_ADM N, ' ROLE_SUPERUSER],

4.3 Requestmap Instances Stored in the Database

31

With this approach you use the Request map domain class to store mapping entries in the database.
Request map has aur | property that contains the secured URL pattern and a confi gAttri bute
property containing a comma-delimited list of required roles and/or tokens such as

| S AUTHENTI CATED_FULLY, | S AUTHENTI CATED REMEMBERED, and

| S_AUTHENTI CATED_ANONYMOUSLY.

To use Request map entries, specify securi t yConfi gType="Request map":

grails.plugin.springsecurity.securityConfigType = "Request map"

You create Request map entries as you create entries in any Grails domain class:

for (String url in [
/', 'lindex', '/index.gsp', '/**/favicon.ico',
"[assets/**' | ' [**¥[js/**" ' [**[cgs/**' | ' [**[]|mages/**"
“/login', "/login.*", "/login/*",
"/logout', '"/logout.*" , '"/logout/*']) {
new Request map(url: url, configAttribute: 'permtAl"').save()

new Request map(url: '/profile/**", configAttribute: 'ROLE USER). save()
new Requestmap(url: '/adm n/**' configAttribute: 'ROLE_ ADM N). save()
new Requestmap(url: '/admin/role/**", configAttribute:

" ROLE_SUPERVI SCR) . save()

new Requestmap(url: '/adm n/user/**', configAttribute:

' ROLE_ADM N, ROLE_SUPERVI SOR') . save()

new Requestmap(url: '/j _spring _security switch user',

confi gAttribute:
' ROLE_SW TCH_USER, i sFul | yAut henti cated()"'). save()

The confi gAttri but e vaue can have a single value or have multiple comma-delimited values. In
this example only users with ROLE_ADM N or ROLE_SUPERVI SCR can access / adm n/ user/ **
urls, and only wusers with ROLE_SW TCH _USER can access the switch-user url (
/j _spring_security_sw tch_user) andin addition must be authenticated fully, i.e. not using a
remember-me cookie. Note that when specifying multiple roles, the user must have at least one of them,
but when combining | S_AUTHENTI CATED_FULLY, | S_AUTHENTI CATED REMEMBERED, or

I S AUTHENTI CATED ANONYMOUSLY (or their corresponding SpEL expressions) with one or more
roles means the user must have one of the roles and satisty the | S_ AUTHENTI CATED rule.

Unlike the Config.groovy Map approach, you do not need to revise the Request map entry order
because the plugin cal culates the most specific rule that applies to the current request.

Requestmap Cache

Request map entries are cached for performance, but caching affects runtime configurability. If you
create, edit, or delete an instance, the cache must be flushed and repopulated to be consistent with the
database. You can cal springSecurityService. cl ear CachedRequest maps() to do this.
For example, if you create a Request mapCont r ol | er the save action should look like this (and the
update and delete actions should similarly call cl ear CachedRequest maps()):

32

cl ass Request mapControl | er {

def springSecurityService

def save() {
def request mapl nstance = new Request map(par ans)
i f (!requestmapl nstance. save(flush: true)) {
render view 'create', nodel: [requestmapl nstance
request mapl nst ance]

return

}
springSecurityService. cl ear CachedRequest maps()
fl ash. nessage = "${nessage(code: 'default.created. nessage', args:
[message(code: 'requestnmap.|abel', default: 'Requestmp'),
request mapl nst ance.id])}"

redirect action: 'show , id: requestmaplnstance.id
}

4.4 Using Expressions to Create Descriptive, Fine-Grained Rules

Spring Security uses the Spring Expression Language (SpEL), which alows you to declare the rules for
guarding URLs more descriptively than does the traditional approach, and also allows much more
fine-grained rules. Where you traditionally would specify alist of role names and/or special tokens (for
example, | S_ AUTHENTI CATED_FULLY), with Spring Security's expression support, you can instead
use the embedded scripting language to define simple or complex access rules.

Y ou can use expressions with any of the previously described approaches to securing application URLS.
For example, consider this annotated controller:

package com your conpany. your app
i nport grails.plugin.springsecurity.annotation. Secured
cl ass SecureController {

@ecured(["hasRol e(' ROLE_ ADM N)"])
def soneAction() {

}

@decured(["aut henticati on. name == 'ral ph'"])
def someQ her Action() {
}

}

In this example, someAct i on requires ROLE_ADM N, and sonmeQt her Act i on requires that the user
be logged in with username 'ralph'.

The corresponding Request map URLswould be

new Request map(url: "/secure/soneAction",
configAttribute: "hasRol e(' ROLE ADM N)"). save()
new Request map(url: "/secure/soneQ herAction",
configAttribute: "authentication.nane == "ral ph'").save()

33

https://docs.spring.io/spring/docs/3.2.x/spring-framework-reference/html/expressions.html
https://docs.spring.io/spring-security/site/docs/3.2.x/reference/htmlsingle/#el-access

and the corresponding static mappings would be

grails.plugin.springsecurity.interceptUl Myp = [
'/ secur e/ soneAction': ["hasRol e(' ROLE_ ADM N) "],
'/ secure/ somett her Action': ["authentication.nane == 'ral ph'"]

]

The Spring Security docs have a table listing the standard expressions, which is copied here for reference:

hasRol e(r ol e) Returns true if the current principal has the specified role.

Returns true if the current principal has any of the supplied roles

hasAnyRol e([rol el, rol e2]) (given as a comma-separated list of strings)

Allows direct access to the principal object representing the

ri ncipal
P P current user

. . Allows direct access to the current Authentication object obtained
aut henti cation

from the SecurityContext
perm t Al l Always evaluates to true
denyAl | Always evaluates to false
I SAnonynous() Returnstrueif the current principal is an anonymous user
I sRenmenber Me() Returns true if the current principal is a remember-me user
i SAut hent i cat ed() Returns true if the user is not anonymous

Returns true if the user is not an anonymous or a remember-me

i sFul | yAut henti cat ed() Lser

the HTTP request, allowing expressions such as
request "isFullyAuthenticated() or
request.getM ethod().equals('OPTIONS)"

In addition, you can use a web-specific expression has| pAddr ess. However, you may find it more
convenient to separate | P restrictions from role restrictions by using the 1P address filter.

To help you migrate traditional configurations to expressions, this table compares various configurations
and their corresponding expressions:

ROLE_ADM N hasRol e(' ROLE_ADM N)

ROLE_USER, ROLE_ADM N hasAnyRol e(' ROLE_USER ,' ROLE_ADM N)
ROLE_ADM N, | S_AUTHENTI CATED FULLY rg‘;ﬁol'yeA(u't Egr';tEi—CAa[z'\g d'z")) e
|' S AUTHENTI CATED ANONYMOUSLY permtAll

| S AUTHENTI CATED REMEMBERED i SAut henti cated() or isRemenber Me()

I S AUTHENTI CATED FULLY I sFul | yAut henti cat ed()

https://docs.spring.io/spring-security/site/docs/3.2.x/reference/htmlsingle/#el-common-built-in

5 Helper Classes
Use the plugin helper classes in your application to avoid dealing with some lower-level details of Spring
Security.

5.1 SecurityTagLib

The plugin includes GSP tags to support conditional display based on whether the user is authenticated,
and/or has the required role to perform a particular action. These tags are in the sec namespace and are
implementedingrai | s. pl ugi n. springsecurity. SecurityTagLib.

ifLoggedIn
Displays the inner body content if the user is authenticated.

Example:

<sec: i f Loggedl n>
Vel cone Back!
</sec:ifLoggedl n>

ifNotLoggedIn
Displays the inner body content if the user is not authenticated.

Example:

<sec: i f Not LoggedI| n>
<g:link controller="login' action="auth'>Login</g:I|ink>
</ sec: i f Not Loggedl n>

ifAllGranted
Displaysthe inner body content only if al of the listed roles are granted.

Example:

<sec:ifA |l Ganted rol es="ROLE ADM N, ROLE SUPERVI SOR' >secur e st uff
here</sec:ifAl | G ant ed>

iIfAnyGranted
Displaysthe inner body content if at least one of the listed roles are granted.

Example:

<sec:ifAnyGanted rol es="ROLE_ADM N, ROLE_SUPERVI SOR' >secur e stuff
here</sec: i f AnyG ant ed>

35

iIfNotGranted
Displays the inner body content if none of the listed roles are granted.

Example:

<sec:ifNotGranted rol es="ROLE USER'>non-user stuff here</sec:ifNotG ant ed>

loggedIinUserinfo

Displays the value of the specified UserDetails field if logged in. For example, to show the username
property:

<sec: | oggedl nUserInfo fiel d="usernane"/>

If you have customized the UserDetails (e.g. with a custom UserDetailsService) to add a f ul | Nane
property, you access it as follows:

Wl come Back <sec:|oggedl nUserlnfo field="full Nane"/>

username
Displays the value of the UserDetails user nane field if logged in.

<sec: i f Logged| n>

Wl cone Back <sec: username/ >

</ sec:ifLoggedl n>

<sec: i f Not LoggedI| n>

<g:link controller="login" action="auth' >Login</g:|ink>
</ sec:if Not Loggedl n>

ifSwitched
Displays the inner body content only if the current user switched from another user. (See also Switch User

)

36

<sec: i f Logged| n>
Logged in as <sec:usernane/ >
</sec:ifLoggedl n>

<sec:ifSw tched>

Resunme as <sec:sw tchedUser Ori gi nal User nane/ >

</ a>

</sec:ifSw tched>

<sec: i f Not Swi t ched>
<sec:ifA |l Ganted rol es=' ROLE SW TCH USER >

<form acti on=" ${request. contextPath}/j _spring_security_swi tch_user'
nmet hod=' POST" >

Switch to user: <input type='text' nane='j_usernane'/>

<i nput type='submt' value='"Switch'/> </fornp

</sec:ifAl |l G anted>

</sec:ifNot Swi t ched>

ifNotSwitched

Displays the inner body content only if the current user has not switched from another user.

switchedUserOriginalUsername

Rendersthe original user's username if the current user switched from another user.

<sec:ifSw tched>

Resunme as <sec:swi tchedUser Ori gi nal User nane/ >

</ a>

</sec:ifSwtched>

access

Renders the body if the specified expression evaluatesto t r ue or specified URL is allowed.

<sec: access expressi on="hasRol e(' ROLE_USER)" >
You're a user

</ sec: access>

<sec:access url="/adm n/user">
<g:link controller="adm n' action="user'>Manage Users</g:link>

</ sec: access>

37

Y ou can also guard access to links generated from controller and action names or named URL mappings
instead of hard-coding the values, for example

<sec: access controller="adm n' action='user'>
<g:link controller="adm n' action="user'>Manage Users</g:|ink>

</ sec: access>

or if you have anamed URL mapping you can refer to that:

<sec:access nmappi ng=' manageUsers' >
<g: l'i nk mappi ng=' manageUser s' >Manage Users</g:|ink>

</ sec: access>

For even more control of the generated URL (still avoiding hard-coding) you can use cr eat eLi nk to
build the URL, for example

<sec: access url =" ${createLink(controller: "admn', action: 'user', base: "/"
)} >
<g:link controller="adnmin' action="user'>Manage Users</g:link>

</ sec: access>

Be sure to include the base: "/ " attribute in this case to avoid appending the context name to the
URL.

noAccess

Renders the body if the specified expression evaluatesto f al se or URL isn't alowed.

<sec: noAccess expression="hasRol e(' ROLE_USER)" >
You're not a user

</ sec: noAccess>

link

A wrapper around the standard Grails link tag that renders if the specified expression evaluatesto t r ue
or URL isallowed.

To define the expression to evaluate within the tag itself:

<sec:link controller="nmyController" action="nyAction" expression=
"hasRol e(' ROLE_USER)">My link text</sec:!|ink>

38

To use access controls defined, for example, in the interceptUrIM ap:

<sec:link controller="nmyController" action="nyAction">My |ink text</sec:|ink>

5.2 SpringSecurityService

grails.plugin.springsecurity. SpringSecurityService provides security utility
functions. It is a regular Grails service, so you use dependency injection to inject it into a controller,
service, taglib, and so on:

def springSecurityService

getCurrentUser()

Retrieves a domain class instance for the currently authenticated user. During authentication a user/person
domain class instance is retrieved to get the user's password, roles, etc. and the id of the instance is saved.
This method uses the id and the domain class to re-load the instance, or the username if the
User Det ai | s instanceisnotaG ai | sUser .

If you do not need domain class data other than the id, you should use the | oadCur r ent User method
instead.

Example:

cl ass SonmeController {
def springSecurityService

def sonmeAction() {
def user = springSecurityService.currentUser

loadCurrentUser()

Often it is not necessary to retrieve the entire domain class instance, for example when using it in a query
where only the id is needed as a foreign key. This method uses the GORM | oad method to create a
proxy instance. This will never be null, but can be invalid if the id doesn't correspond to a row in the
database, although thisis very unlikely in this scenario because the instance would have been there during
authentication.

If you need other data than just the id, use the get Cur r ent User method instead.

Example:

39

cl ass SonmeController {
def springSecurityService

def sonmeAction() {
def user = springSecurityService.isLoggedln() ?
springSecurityService. | oadCurrent User () :
nul |
if (user) {
CreditCard card = CreditCard. findByl dAndUser (
parans.id as Long, user)

isLoggedIn()

Checks whether there is a currently logged-in user.

Example:

cl ass SonmeController {
def springSecurityService

def soneAction() {
if (springSecurityService.isLoggedin()) {

el se {

}
}
}

getAuthentication()

Retrieves the current user's Authentication. If authenticated, this will typically be a
UsernamePasswordA uthenticationT oken.

If not authenticated and the AnonymousAuthenticationFilter is active (true by default) then the
anonymous user's authentication will be returned. This will be an instance of
grails.plugin.springsecurity.authentication.

Grai |l sAnonynmousAut henti cati onToken with a standard

org. springframework. security.core.userdetails. User instance as its Principal. The
authentication will have asingle granted role, ROLE_ ANONYMOUS.

Example:

40

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/Authentication.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/UsernamePasswordAuthenticationToken.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/web/authentication/AnonymousAuthenticationFilter.html

cl ass SonmeController {
def springSecurityService

def sonmeAction() {
def auth = springSecurityService. authentication
String usernane = auth. usernane
/1 a Collection of G antedAuthority
def authorities = auth.authorities
bool ean aut henti cated = auth. aut henti cat ed

getPrincipal()

Retrieves the currently logged in user's Pri nci pal . If authenticated, the principal will be a
grails.plugin.springsecurity.userdetails.Gail sUser, unless you have created a
custom User Det ai | sSer vi ce, in which case it will be whatever implementation of UserDetails you
use there.

If not authenticated and the AnonymousA uthenticationFilter is active (true by default) then a standard
org. springframework. security.core.userdetails. User isused.

Example:

cl ass SonmeController {
def springSecurityService

def soneAction() {
def principal = springSecurityService.principa
String username = principal.usernane
/1 a Collection of G antedAuthority
def authorities = principal.authorities
bool ean enabl ed = princi pal . enabl ed

encodePassword()

Hashes a password with the configured hashing scheme. By default the plugin uses berypt, but you can
configure the scheme with the grail s. pl ugi n. springsecurity. password. al gorithirmr
attribute in Conf i g. gr oovy. The supported values are 'berypt’ to use berypt, ‘pbkdf2' to use PBKDF2,
or any message digest algorithm that is supported in your JDK; see this Java page for the available
algorithms.

@ You are strongly discouraged from using MD5 or SHA-1 algorithms because of
their well-known vulnerabilities. You should also use a salt for your passwords,
which greatly increases the computational complexity of computing passwords if
your database gets compromised. See Salted Passwords.

Example:

41

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/userdetails/UserDetails.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/web/authentication/AnonymousAuthenticationFilter.html
https://en.wikipedia.org/wiki/PBKDF2
https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html

cl ass PersonController {
def springSecurityService

def updateAction() {
def person = Person. get (parans.id)

parans. salt = person.salt

i f (person.password != parans. password) {

par ans. password = springSecurityService.encodePasswor d(
password, salt)

def salt = ...// e.g. randomy generated using a utility method
parans.salt = salt

}

person. properties = parans

if (!person.save(flush: true)) {
render view ‘'edit', nodel: [person: person]
return

redirect action: 'show, id: person.id

& If you are hashing the password in the User domain class (using bef or el nsert
and encodePasswor d) then don't call
springSecurityServi ce. encodePassword() in your controller since
you'll double-hash the password and users won't be able to log in. It's best to
encapsul ate the password handling logic in the domain class.

updateRole()

Updates a role and, if you use Request map instances to secure URLS, updates the role name in all
affected Request map definitionsif the name was changed.

Example:

class Rol eController {
def springSecurityService

def update() {
def rol elnstance = Rol e. get (parans.id)
if (!springSecurityService.updateRol e(rol el nstance, parans)) ({
render view. 'edit', nodel: [rolelnstance: rolelnstance]
return

fl ash. nessage = "The rol e was updat ed”
redi rect action: show, id: rolelnstance.id
}

}

deleteRole()

Deletesarole and, if you use Request map instances to secure URLS, removes the role from all affected
Request map definitions. If a Request map's config attribute is only the role name (for example,
"/foo/bar/**=ROLE_FOQ"), it is deleted.

42

Example:

cl ass Rol eController {
def springSecurityService

def delete() {
def rol elnstance = Rol e. get (parans.id)

try {
springSecurityService. del eteRol e (rol el nstance
fl ash. nessage = "The rol e was del et ed"”
redirect action: |ist

}

catch (Datal ntegrityViolati onException e) {
fl ash. nessage = "Unable to delete the role"
redirect action: show, id: parans.id

clearCachedRequestmaps()

Flushes the Requestmaps cache and triggers a complete reload. If you use Request map instances to
secure URLSs, the plugin loads and caches all Request map instances as a performance optimization.
This action saves database activity because the requestmaps are checked for each request. Do not allow
the cache to become stale. When you create, edit or delete a Request map, flush the cache. Both
updat eRol e() and del et eRol e() call clearCachedRequestmaps()for you. Call this method when
you create anew Request map or do other Request map work that affects the cache.

Example:

cl ass RequestmapControl [er {
def springSecurityService

def save() {
def request mapl nstance = new Request map(par ans)
i f (!requestmapl nstance. save(flush: true)) {
render view 'create',
nodel : [request mapl nst ance: request mapl nst ance]

return
}
springSecurityService. cl ear CachedRequest maps()
fl ash. nessage = "Requestmap creat ed"

redirect action: show, id: requestnaplnstance.id

reauthenticate()

Rebuilds an Authentication for the given username and registers it in the security context. Y ou typically
use this method after updating a user's authorities or other data that is cached in the Aut hent i cati on
or Pri nci pal . It aso removes the user from the user cache to force arefresh at next login.

Example:

43

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/Authentication.html

class UserController {
def springSecurityService

def update() {
def userlnstance = User. get(parans.id)

parans. salt = person.salt
i f (params. password) ({
par ans. password = springSecurityService.encodePasswor d(
par ans. password, salt)
def salt = ...// e.g. randomy generated using a utility nethod
parans.salt = salt

userlnstance. properties = paranms

if (luserlnstance.save(flush: true)) {
render view ‘'edit', nodel: [userlnstance: userlnstance]
return

}

if (springSecurityService.loggedln &
springSecurityService. principal.usernane ==
user | nst ance. user nane) {
springSecurityService.reauthenticate userlnstance. usernamnme

flash. nessage = "The user was updat ed"
redirect action: show, id: userlnstance.id
}

}

5.3 SpringSecurityUtils

grails.plugin.springsecurity. SpringSecurityUils is a utility class with static
methods that you can call directly without using dependency injection. It is primarily an internal class but
can be called from application code.

authoritiesToRoles()
Extracts role names from an array or Col | ect i on of GrantedAuthority.

getPrincipalAuthorities()

Retrieves the currently logged-in user's authorities. It is empty (but never nul 1) if the user is not logged
in.

parseAuthoritiesString()
Splits acomma-delimited String containing role namesinto aLi st of GrantedAuthority.

ifAllGranted()

Checks whether the current user has all specified roles (a comma-delimited String of role names).
Primarily used by Securi tyTagLi b. i f Al | G ant ed.

ifNotGranted()

Checks whether the current user has none of the specified roles (a comma-delimited String of role
names). Primarily used by Securi t yTagLi b. i f Not Gr ant ed.

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/GrantedAuthority.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/GrantedAuthority.html

iIfAnyGranted()

Checks whether the current user has any of the specified roles (a comma-delimited String of role names).
Primarily used by Securi tyTagLi b. i f AnyG ant ed.

getSecurityConfig()
Retrieves the security part of the Conf i gur ati on (fromgr ai | s- app/ conf/ Confi g. gr oovy).

loadSecondaryConfig()
Used by dependent plugins to add configuration attributes.

reloadSecurityConfig()

Forces areload of the security configuration.

isAjax()

Checks whether the request was triggered by an Ajax call. The standard way is to determine whether
X- Request ed- W t h request header is set and has the value XMLHt t pRequest . In addition, you can
configure the name of the header with the grail s. pl ugi n. springsecurity. aj axHeader
configuration attribute, but thisis not recommended because all major JavaScript toolkits use the standard
name. Further, you can register a closure in Conf i g. gr oovy with the name aj axCheckC osure
that will be used to check if arequest is an Ajax request. It is passed the request as its single argument,

eg.

grails.plugin.springsecurity.ajaxCheckd osure = { request ->
[l return true or false
}

You can also force the request to be treated as Ajax by appending &aj ax=t r ue to your request query
string.

registerProvider()
Used by dependent pluginsto register an AuthenticationProvider bean name.

registerFilter()
Used by dependent pluginsto register afilter bean namein a specified position in the filter chain.

iIsSwitched()
Checks whether the current user switched from another user.

getSwitchedUserOriginalUsername()
Getsthe original user's username if the current user switched from another user.

doWithAuth()

45

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/AuthenticationProvider.html

Executes a Closure with the current authentication. The one-parameter version which takes just a Closure
assumes that there's an authentication in the HTTP Session and that the Closure is running in a separate
thread from the web request, so the Secur i t yCont ext and Aut henti cat i on aren't available to the
standard Thr eadLocal . This is primarily of use when you explicitly launch a new thread from a
controller action or service called in request scope, not from a Quartz job which isn't associated with an
authentication in any thread.

The two-parameter version takes a username and a Closure to authenticate as. Thisis will authenticate as
the specified user and execute the closure with that authentication. It restores the authentication to the one
that was active if it exists, or clears the context otherwise. Thisis similar to run-as and switch-user but is
only local to the Closure.

46

6 Events

Spring Security fires application events after various security-related actions such as successful login,
unsuccessful login, and so on. Spring Security uses two main event classes, AbstractAuthenticationEvent
and AbstractAuthorizationEvent.

6.1 Event Notification

Y ou can set up event notifications in two ways. The sections that follow describe each approach in more
detail.

® Register an event listener, ignoring events that do not interest you. Spring allows only partial event
subscription; you use generics to register the class of events that interest you, and you are notified of
that class and all subclasses.

® Register one or more callback closures in grail s-app/ conf/ Confi g. groovy that take
advantage of the plugin's grails.plugin.springsecurity.
Securi tyEvent Li st ener . Thelistener does the filtering for you.

AuthenticationEventPublisher

Spring Security publishes events using an AuthenticationEventPublisher which in turn fire events using
the ApplicationEventPublisher. By default no events are fired since the
Aut henti cati onEvent Publ i sher instance registered is a
grails.plugin.springsecurity.authentication.

Nul | Aut henti cati onEvent Publ i sher. But you can enable event publishing by setting
grails.plugin.springsecurity.useSecurityEventListener = true in
grail s-app/ conf/ Confi g. groovy.

You can use the useSecurityEvent Li st ener setting to temporarily disable and enable the
callbacks, or enable them per-environment.

UsernameNotFoundException

Most authentication exceptions trigger an event with asimilar name as described in this table:

AccountExpiredException Authenti cationFailureExpiredEvent
AuthenticationServiceException AuthenticationFailureServiceExceptionEvent

L ockedException Authenti cationFailureL ockedEvent
CredentialsExpiredException AuthenticationFail ureCredential sExpiredEvent
DisabledException AuthenticationFailureDisabledEvent
BadCredential sException AuthenticationFailureBadCredential sEvent

UsernameNotFoundException AuthenticationFailureBadCredential sEvent

ProviderNotFoundException AuthenticationFailureProviderNotFoundEvent

47

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/event/AbstractAuthenticationEvent.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/access/event/AbstractAuthorizationEvent.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/AuthenticationEventPublisher.html
https://docs.spring.io/spring/docs/4.0.x/javadoc-api/org/springframework/context/ApplicationEventPublisher.html

This holds for all exceptions except User nameNot FoundExcepti on which triggers an
Aut henti cati onFai | ureBadCr edenti al sEvent just likeaBadCr edenti al sExcepti on.
This is a good idea since it doesn't expose extra information - there's no differentiation between a bad
password and a missing user. In addition, by default a missing user will trigger a
BadCr edent i al sExcepti on for the same reasons. Y ou can configure Spring Security to re-throw
the original User nameNot FoundExcepti on instead of converting it to a
BadCredenti al sexception by setting grails.plugin.springsecurity.dao.
hi deUser Not FoundExceptions = fal seingrail s-app/conf/ Config.groovy.

Fortunately all subclasses of AbstractAuthenticationFailureEvent have a get Excepti on() method
that gives you access to the exception that triggered the event, so you can use that to differentiate between
abad password and amissing user (if hi deUser Not FoundExcept i ons=f al se).

6.2 Registering an Event Listener

Enable events with grail s. plugi n.springsecurity.useSecurityEventListener =
t r ue and create one or more Groovy or Java classes, for example:

package com f oo. bar

i mport org.springframework. cont ext. Appli cati onLi st ener
i mport org.springfranework. security.authentication.event.
Aut hent i cati onSuccessEvent

cl ass MySecurityEventLi stener
i mpl ements ApplicationlLi stener <Aut henti cati onSuccessEvent> {

voi d onApplicati onEvent (Aut henti cati onSuccessEvent event) {
/1 handl e the event

}
}

Register theclassingr ai | s- app/ conf/ spring/ resour ces. groovy:

i nport com foo. bar. MySecurityEvent Li st ener

beans = {
mySecurityEvent Li stener (MySecurityEventLi st ener)

6.3 Registering Callback Closures

Alternatively, enable events with
grails.plugin.springsecurity.useSecurityEventLi stener = true and register
one or more calback closure(s) in grails-app/conf/Config.groovy and let
Securi tyEvent Li st ener do thefiltering.

Implement the event handlers that you need, for example:

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/event/AbstractAuthenticationFailureEvent.html

grails {
pl ugin {
springsecurity {
useSecurityEvent Li stener = true

onl nteractiveAut henti cationSuccessEvent = { e, appCtx ->
/1 handl e InteractiveAuthenticati onSuccessEvent
}

onAbstract Aut henti cati onFail ureEvent = { e, appCtx ->
/1 handl e Abstract Aut henti cati onFai | ur eEvent
}

onAut henti cati onSuccessEvent = { e, appCx ->
// handl e Aut henti cati onSuccessEvent
}

onAut henti cati onSwi t chUser Event = { e, appCx ->
/1 handl e Aut henticationSw tchUser Event
}

onAut hori zati onEvent = { e, appCx ->
/1 handl e Authori zati onEvent
}

}
}
}

None of these closures are required; if none are configured, nothing will be called. Just implement the
event handlers that you need.

Note: When a user authenticates, Spring Security initially firesan Aut hent i cati onSuccessEvent.
This event fires before the Aut hent i cat i on isregistered inthe Secur i t yCont ext Hol der , which
meansthat thespri ngSecuri t ySer vi ce methods that access the logged-in user will not work. Later
in the processing a second event is fired, an | nt er act i veAut henti cati onSuccessEvent, and
when this happens the Secur i t yCont ext Hol der will have the Aut hent i cat i on. Depending on
your needs, you can implement a callback for either or both events.

49

7 User, Authority (Role), and Requestmap Properties

Properties you are most likely to be override are the User and Aut hori ty (and Request map if you
use the database to store mappings) class and field names.

userL ookup.userDomainClassName 'Person’ User class name.

userL ookup.usernamePropertyName ‘username’ User class username field.
userL ookup.passwordPropertyName 'password' User class password field.
userL ookup.authoritiesPropertyName ‘authorities User classrole collection field.
userL ookup.enabledPropertyName ‘enabled' User class enabled field.

userL ookup.accountExpiredPropertyName

‘accountExpired'

User class account expired field.

userL ookup.accountL ockedPropertyName 'accountLocked” User class account locked field.

userL ookup.passwordExpiredPropertyName 'passwordExpired’ User class password expired field.
userL ookup.authorityJoinClassName '‘PersonAuthority’ User/Role many-many join class name.
authority.className ‘Authority’ Role class name.

authority.nameField ‘authority’ Role classrole namefield.

requestM ap.className 'Requestmap’ Requestmap class name.
requestMap.urlField ‘url’ Requestmap class URL pattern field.

requestM ap.configAttributeField

‘configAttribute

Requestmap class role/token field.

50

8 Authentication
The Spring Security plugin supports several approaches to authentication.

The default approach stores users and roles in your database, and uses an HTML login form which
prompts the user for a username and password. The plugin aso supports other approaches as described in
the sections below, as well as add-on plugins that provide external authentication providers such as LDAP
and single sign-on using CAS

8.1 Basic and Digest Authentication

To use HTTP Basic Authentication in your application, set the useBasi cAut h attributetot r ue. Also
changethe basi c. r eal nNane default value to one that suits your application, for example:

grails. plugin.springsecurity.useBasi cAuth = true
grails.plugin.springsecurity.basic.real nNane = "Ral ph's Bait and Tackl e"

useBasicAuth fal se Whether to use basic authentication.
basic.realmName '‘Graills Realm' Realm name displayed in the browser authentication popup.
basic. credentialsCharset 'UTF-8' The character set used to decode Base64-encoded data

With this authentication in place, users are prompted with the standard browser login dialog instead of
being redirected to alogin page.

If you don't want all of your URLs guarded by Basic Auth, you can partition the URL patterns and apply
Basic Auth to some, but regular form login to others. For example, if you have a web service that uses
Basic Auth for / webservi ce/ ** URLSs, you would configure that using the chai nMap config
attribute:

grails.plugin.springsecurity.filterChain.chainMp = [

"/webservice/**': ' JO NED FI LTERS, - excepti onTransl ationFilter',

YxE
" JO NED_FI LTERS, - basi cAut henti cationFilter, -basi cExceptionTransl ationFilter'
]

In this example we're using the JO NED_FI LTERS keyword instead of explicitly listing the filter names.
Specifying JO NED_FI LTERS means to use all of the filters that were configured using the various
config options. In each case we also specify that we want to exclude one or more filters by prefixing their
names with - .

For the /webservice/** URLs, we want all filters except for the standard
Excepti onTransl ati onFi | t er since we want to use just the one configured for Basic Auth. And
for the / ** URLSs (everything else) we want everything except for the Basic Auth filter and its
configured Excepti onTransl ati onFil ter.

51

https://grails.org/plugin/spring-security-ldap
https://grails.org/plugin/spring-security-cas
https://en.wikipedia.org/wiki/Basic_access_authentication

Digest Authentication is similar to Basic but is more secure because it does not send your password in
obfuscated cleartext. Digest resembles Basic in practice - you get the same browser popup dialog when
you authenticate. But because the credential transfer is genuinely hashed (instead of just Base64-encoded
as with Basic authentication) you do not need SSL to guard your logins.

useDigestAuth fal se Whether to use Digest authentication.

digest.realmName Ige:alalrLS Realm name displayed in the browser popup

digest.key ‘changeme Key used to bu.ild the nonce for authentication; it should be
changed but that's not required.

digest. 300 How long a nonce stays valid.

nonceV aliditySeconds

digest.

0 ordAlreadyEncoded fal se Whether you are managing the password hashing yourself.

| f true, creates an authenticated
User nanePasswor dAut hent i cati onToken to avoid

digest. loading the user from the database twice. However, this process

createA uthenticatedToken false skips the isAccountNonExpired(), isAccountNonLocked(),
isCredential SNonExpired(), isEnabled() checks, so it is not
advised.

. If true, a cleartext password encoder is used (not

digest.

fal se recommended). If false, passwords hashed by

useCleartextPasswords Di gest Aut hPasswor dEncoder are stored in the database.

Digest authentication has a problem in that by default you store cleartext passwords in your database. This
is because the browser hashes your password along with the username and Realm name, and this is
compared to the password hashed using the same algorithm during authentication. The browser does not
know about your MessageDi gest algorithm or salt source, so to hash them the same way you need to
load a cleartext password from the database.

The plugin does provide an aternative, although it has no configuration options (in particular the digest
algorithm cannot be changed). If di gest . useCl eart ext Passwor ds isf al se (the default), then
the passwor dEncoder bean is replaced with an instance of
grails.plugin.springsecurity.authentication.encoding.

Di gest Aut hPasswor dEncoder . This encoder uses the same approach as the browser, that is, it
combines your password along with your username and Realm name essentially as a salt, and hashes with
MD5. MD5 is not recommended in general, but given the typical size of the salt it is reasonably safe to
use.

The only required attribute is useDi gest Aut h, which you must set to t r ue, but you probably also
want to change the realm name:

grails.plugin.springsecurity.useDi gestAuth = true
grails.plugin.springsecurity.digest.realnNane = "Ral ph's Bait and Tackl e"

52

https://en.wikipedia.org/wiki/Digest_access_authentication

53

Digest authentication cannot be applied to a subset of URLs like Basic authentication can. Thisis due to
the password encoding issues. SO you cannot use the chai nMap attribute here - al URLs will be
guarded.

& Note that since the Digest auth password encoder is different from the typical
encoders you must to pass the username as the "salt" value. The generated User class
uses spri ngSecurityServi ce which assumes you're not using a salt value. If
you use the generated code in the User class to encode your password, change the

dependency injection for springSecurityService with one for the passwordEncoder
bean instead:

transi ent passwor dEncoder

and change the code in encodePassword() from

password = springSecurityService. encodePasswor d(passwor d)

to

password = passwor dEncoder . encodePasswor d(passwor d, user nane)

8.2 Certificate (X509) Login Authentication

Another authentication mechanism supported by Spring Security is certificate-based, or "mutual
authentication”. It requires HTTPS, and you must configure the server to require a client certificate
(ordinarily only the server provides a certificate). Y our username is extracted from the client certificate if
it isvalid, and you are "pre-authenticated”". As long as a corresponding username exists in the database,
your authentication succeeds and you are not asked for a password. Your Aut hent i cati on contains
the authorities associated with your username.

The table describes available configuration options.

usexX509 fal se

Whether to support certificate-based logins

x509.continueFilterChainOn

Whether to proceed when an authentication attempt

Unsuccessful Authentication true fails to allow other authentication mechanisms to
process the request.
: . 1w REgular expression (regex) for extracting the
x509.subjectDnRegex CN=(*?)(2,$)

username from the certificate's subject name.

x509.checkForPrincipalChanges f al se

Whether to re-extract the username from the
certificate and check that it's still the current user
when avalid Aut hent i cat i on aready exists.

x509.invalidateSessionOn

Principal Change true

Whether to invalidate the session if the principal
changed (based on a
checkFor Pri nci pal Changes check).

x509.subjectDnClosure none

| f set, the plugin's

Cl osur eX509Pri nci pal Extractor class is
used to extract information from the X.509
certificate using the specified closure

x509. throwException

WhenTokenRejected Vel SE

If t rue thrown aBadCr edent i al sExcepti on

The details of configuring your server for SSL and configuring browser certificates are beyond the scope
of this document. If you use Tomcat, see its SSL_documentation. To get a test environment working, see
the instructionsin this discussion at Stack Overflow.

8.3 Remember-Me Cookie

Spring Security supports creating a remember-me cookie so that users are not required to log in with a
username and password for each session. This is optional and is usually implemented as a checkbox on
the login form; the default aut h. gsp supplied by the plugin has this feature.

https://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.html
https://stackoverflow.com/questions/1180397/tomcat-server-client-self-signed-ssl-certificate

. L , remember-me cookie name; should
rememberMe.cookieName grails remember_me : -
be unique per application.
If true, create a remember-me
rememberMe. . . i
fal se cookie even if no checkbox is on
alwaysRemember
the form.
rememberMe. ..
tokenValiditySeconds 1209600 (14 days) Max age of the cookie in seconds.
rememberM e.parameter ' spring security remember me' Login form remember-me
P —SPring_ Y - checkbox name.
L , Value used to encode cookies;
rememberie key grailsRocks should be unique per application.
Whether to use a secure cookie or
not; if true a secure cookie is
. created, if fal se a non-secure
r Me. r kie non o .
ememberMe.useSecureCookie none cookie is created, and if not set, a
secure cookie is created if the
request used HTTPS
Whether to create a session of one
rememberMe. true doesn't exist to ensure that the
createSessionOnSuccess Aut henti cati on is stored for
future requests
. If true, stores persistent login
rememberMe.persistent false information in the database.
rememberMe.persistentToken. none Domain class used to manage
domainClassName persistent logins.
rememberMe.persistentToken. 16 Number of characters in the
seriesLength cookie'sser i es attribute.
rememberMe.persistentToken. 16 Number of characters in the
tokenLength cookie'st oken attribute.
atr.rememberMeClass RememberM eA uthenticationToken remember-me authentication class.

Y ou are most likely to change these attributes:

* renmenber Me. cooki eNane. Purely aesthetic as most users will not look at their cookies, but you
probably want the display nhame to be application-specific rather than "grails remember_me".

* renmenber Me. key. Part of a salt when the cookie is hashed. Changing the default makes it harder
to execute brute-force attacks.

* renmenber Me. t okenVal i di t ySeconds. Default is two weeks; set it to what makes sense for
your application.

Persistent Logins

55

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/RememberMeAuthenticationToken.html

The remember-me cookie is very secure, but for an even stronger solution you can use persistent logins
that store the username in the database. See the Spring Security docs for a description of the
implementation.

Persistent login is also useful for authentication schemes like OpenlD and Facebook, where you do not
manage passwords in your database, but most of the other user information is stored locally. Without a
password you cannot use the standard cookie format, so persistent logins enable remember-me cookies in
these scenarios.

To use this feature, run the s2-create-persistent-token script. This will create the domain class, and
register its name in gr ai | s- app/ conf/ Confi g. gr oovy. It will also enable persistent logins by
setting r emenber Me. per si st ent tot rue.

8.4 Ajax Authentication

The typical pattern of using web site authentication to access restricted pages involves intercepting access
requests for secure pages, redirecting to alogin page (possibly off-site, for example when using a Single
Sign-on implementation such as CAS), and redirecting back to the originally-requested page after a
successful login. Each page can also have alogin link to allow explicit logins at any time.

Another option is to also have a login link on each page and to use JavaScript to present a login form
within the current page in a popup. The JavaScript code submits the authentication request and displays
SUCCESS Or error messages as appropriate.

The plugin supports Ajax logins, but you need to create your own client-side code. There are only a few
necessary changes, and of course the sample code here is pretty basic so you should enhance it for your
needs.

The approach here involves editing your template page(s) to show "You'relogged in as ..." text if logged
inand alogin link if not, along with a hidden login form that is shown using JavaScript.

This example uses [Query and jgModal, a jQuery plugin that creates and manages dialogs and popups.
Download | gqMbdal . j s and copy it to grai |l s-app/ assets/javascripts, and download
] qMbdal . css andcopy ittograi | s- app/ asset s/ styl esheets.

Creategr ai | s- app/ asset s/ javascri pt s/ aj axLogi n.j s and add this JavaScript code:

var onLogi n;

$. aj axSet up({
bef oreSend: function(jgXHR, event) {
if (event.url !'= $("#ajaxLoginForm').attr("action")) {
/'l save the 'success' function for later use if
/] it wasn't triggered by an explicit login click
onLogi n = event. success;

},
st at usCode: ({
/1l Set up a global Ajax error handler to handl e 401
/'l unaut horized responses. If a 401 status code is
/'l returned the user is no |longer logged in (e.g. when
/'l the session tines out), so re-display the login form
401: function() {
showLogi n() ;

}
1)

56

https://docs.spring.io/spring-security/site/docs/3.2.x/reference/htmlsingle/#remember-me
http://grails.org/plugin/spring-security-cas
https://jquery.com/
http://jquery.iceburg.net/jqModal/

57

function showLogin() {
var aj axLogin = $("#aj axLogin");
aj axLogi n.css("text-align", "center");
aj axLogi n. j gnShow() ;

function | ogout (event) ({
event . prevent Def aul t () ;
$. aj ax({
url: $("#_logout").attr("href"),
met hod: " POST",

success: function(data, textStatus, jgXHR) {

wi ndow. | ocation = "/";
}1
error: function(jgXHR, textStatus, errorThrown) {
consol e. |l og("Logout error, textStatus: " + textStatus +
", errorThrown: " + errorThrown);

}
1)
}

function aut hAj ax()
$(" #l ogi nMessage") . ht ml (" Sendi ng request

..").show();

var form = $("#aj axLogi nForni');

$. aj ax({
url: formattr("action"),
met hod: " POST",
dat a: formserialize(),

dat aType: "JSON',
success: function(json, textStatus, jgXHR) {
if (json.success) {
fornf0].reset();
$(" #l ogi nMessage") . enpt y();
$(" #aj axLogi n").jqnHi de() ;
$(" #l ogi nLi nk") . htni (
'Logged in as ' + json.usernane +
(<a href="" + $("#_logout").attr("href") +
"" id="l ogout">Logout)");
$("#l ogout ™). click(logout);
if (onLogin) {
/| execute the saved event.success function
onLogi n(j son, textStatus, jgXHR);

else if (json.error)
$("#l ogi nMessage") . htm (' ' +
json.error + "</error>");
}
el se {
$(" #l ogi nMessage") . ht M (j gXHR r esponseText);

},

error: function(jgXHR, textStatus, errorThrown) {
if (jgXHR status == 401 && j gXHR. get ResponseHeader ("Location")) {
/'l the login request itself wasn't allowed, possibly because the
/1 post url is incorrect and access was denied to it
$("#l ogi nMessage") . htm (' ' +
"Sorry, there was a problemw th the | ogin request</error>");

el se {
var responseText = jgXHR responseText;
i f (responseText) {
var json = $. parseJSON(responseText);
if (json.error) {
$(" #l ogi nMessage") . htm (' " +
json.error + "<lerror>");
return;

}

el se {
responseText = "Sorry, an error occurred (status: " +
textStatus + ", error: " + errorThrown + ")"

}
$("#l ogi nMessage"). html (' " +
responseText + "</error>");
}

}
1)
}
$(function() {
$("#aj axLogi n").jqgm({ cl oseOnEsc: true })
$(" #aj axLogi n").j qmAddd ose(" #cancel Logi n");
$(" #a) axLogi nForm") . submi t (function(event) {
event . prevent Defaul t () ;
aut hAj ax();

ézh#authAiax").click(authAjax);
})‘$("#Iogout").click(logout);

and creategr ai | s- app/ asset s/ styl esheet s/ aj axLogi n. css and add this CSS:

58

59

#aj axLogi n {

#aj

#aj

#aj

}

[l

[l

[l

paddi ng: Opx;

text-align: center

di spl ay: none;

axLogi n .inner {

wi dt h: 400px;

paddi ng- bott om 6pX;

mar gi n: 60px aut o;
text-align: left;

bor der: 1px solid #aab;
backgr ound- col or: #f Of Of a;

- moz- box- shadow: 2px 2px 2px #eee;

-webki t - box- shadow. 2px 2px 2px #eee;
-kht m - box- shadow. 2px 2px 2px #eee;

box- shadow. 2px 2px 2px #eee;
axLogin .inner .fheader {

paddi ng: 18px 26px 1l4px 26px;
background- col or: #f 7f 7f f;

mar gi n: Opx 0 14px O;

col or: #2e3741,

font -si ze: 18px;

font - wei ght : bol d;

axLogin .inner .cssformp {

cl ear: left;

mar gi n: 0;

paddi ng: 4px 0 3px O;

paddi ng-1 eft: 105px;
mar gi n- bottom 20px;
hei ght : 1%

#aj axLogin .inner .cssforminput[type="text"],
#aj axLogi n .inner .cssforminput[type="password"] {

}

wi dt h: 150px;

#aj axLogin .inner .cssformlabel {
font - wei ght: bol d;
float: left;
text-align: right;
margin-left: -105px;
wi dt h: 150px;

o G

o @

#aj

=

o=

[l

paddi ng-t op: 3px;
paddi ng-right: 10px;

axLogi nButton {
background- col or: #efefef;
font-wei ght: bol d;
paddi ng: 0.5em lem
di spl ay: -noz-inline-stack;
di spl ay: inline-block
vertical-align: mddle;
whi t e- space: now ap
overflow visible;
t ext - decorati on: none;

-noz- border-radius: 0.3em
-webki t - border -radi us: 0.3em

bor der-radius: 0.3em

axLogi nBut t on: hover, . ajaxLogi nButton:focus {
background- col or: #999999;
color: #ffffff;

axLogin .inner .login _nessage {
paddi ng: 6px 25px 20px 25px;
col or: #c33;

#aj axLogin .inner .text_ {
wi dt h: 120px;
}

#aj axLogi n .inner .chk {
hei ght: 12px;

.error Message {
col or: red;
}

There's no need to register the JavasScript files in
grail s-app/ assets/javascripts/application.js if you have this require_tree
directive:

/1= require_tree .

but you can explicitly include them if you want. Register the two CSS files in
[grail s-app/assets/styl esheets/application.css:

/*

*= require aj axLogin
*= require jqModal

x|

We'll need some GSP code to define the HTML, SO create
grail s-app/views/includes/ _aj axLogi n. gsp and add this:

60

<g:link elenentld="_|ogout' controller="1ogout'>Logout</g:link>
</ span>

<span id="1ogi nLi nk" style="position: fl oat:
right">
<sec: i f Logged| n>

Logged in as <sec:usernanme/> (<g:link el ementld="1ogout
control | er="1ogout' >Logout </ g: | i nk>)
</sec:ifLoggedl n>
<sec: i f Not LoggedI| n>

<a href="#" onclick="showLogin();
</ sec: i f Not Loggedl n>
</ span>

relative; margin-right: 30px;

return fal se;">Login

<di v id="aj axLogi n" class="j qmW ndow' styl e="z-i ndex:
<div class="inner">
<di v cl ass="fheader">Pl ease Login..</div>
<form acti on="${request.contextPath}/j _spring_security_check"
met hod="POST" i d="aj axLogi nForni' nane="aj axLogi nFor nf
cl ass="cssfornm' autoconpl ete="of f">

3000; ">

<p>
<l abel for="usernanme">User nane: </ | abel >
<i nput type="text" class="text "
nane="j usernane" id="usernanme" />
</ p>
<p>
<l abel for="password">Password</| abel >
<i nput type="password" class="text "
nane="j password" id="password" />
</ p>
<p>
<l abel for="renenber ne">Renenber ne</| abel >
<i nput type="checkbox" class="chk" id="renenber_ne"
nanme="_spring_security renenber ne"/>
</ p>
<p>
<i nput type="submit" id="authAj ax" name="aut hAj ax"
val ue="Logi n" cl ass="aj axLogi nButton" />
<i nput type="button" id="cancel Logi n" val ue="Cancel "
cl ass="aj axLogi nButton" />
</ p>
</ form
<div style="display: none; text-align: left;" id="logi nMessage"></di v>
</div>
</ di v>
And finally, update the grail s-app/views/|ayouts/min.gsp layout to include
_aj axLogi n. gsp, adding it after the <body> tag:
<htm |ang="en" class="no-js">
<head>
<g: | ayout Head/ >
</ head>
<body>
<g: render tenplate='/includes/ajaxLogin'/>
<g: | ayout Body/ >
</ body>
</htm >

The important aspects of this code are:

61

® Thereisa positioned in the top-right that shows the username and a logout link when logged
in, and alogin link otherwise.

® The form posts to the same URL as the regular form, /j _spring_security_check, and is
mostly the same except for the addition of a "Cancel" button (you can also dismiss the dialog by
clicking outside of it or with the escape key).

® Error messages are displayed within the popup <div>.

® Because there is no page redirect after successful login, the Javascript replaces the login link to give
avisua indication that the user islogged in.

® The Logout link also uses Ajax to submit a POST request to the standard logout url and redirect you
to the index page after the request finishes.

® Note that in the JavaScript | ogout function, you'll need to change the url in the success
callback to the correct post-logout value, e.g. wi ndow. | ocati on = "/appnane";

How Does Ajax login Work?

Most Ajax librariesinclude an X- Request ed- W t h header that indicates that the request was made by
XMLHt t pRequest instead of being triggered by clicking a regular hyperlink or form submit button.
The plugin uses this header to detect Ajax login requests, and uses subclasses of some of Spring Security's
classes to use different redirect urls for Ajax requests than regular requests. Instead of showing full pages,
Logi nControl | er has JSON-generating methods aj axSuccess(), aj axDeni ed(), and
aut hf ai | () that generate JSSON that the login Javascript code can use to appropriately display success
Or error messages.

To summarize, the typical flow would be

62

63

® click thelink to display the login form
® enter authentication details and click Login
® theformissubmitted using an Ajax request
* if the authentication succeeds:
® aredirectto/ | ogi n/ aj axSuccess occurs (thisURL is configurable)

® the rendered response is JSON and it contains two values, a boolean value success with the
valuet r ue and astring value user nanme with the authenticated user'slogin name

® the client determines that the login was successful and updates the page to indicate the the user
islogged in; thisis necessary since there's no page redirect like there would be for a non-Ajax
login

* if the authentication fails:
® aredirectto/ | ogi n/ aut hf ai | ?aj ax=t r ue occurs (this URL is configurable)

® the rendered response is JSSON and it contains one value, a string value err or with the
displayable error message; this will be different depending on why the login was unsuccessful
(bad username or password, account locked, etc.)

* the client determines that the login was not successful and displays the error message

® note that both a successful and an unsuccessful login will trigger the onSuccess Ajax callback; the
onEr r or callback will only be triggered if there's an exception or network issue

9 Authentication Providers

The plugin registers authentication providers that perform authentication by implementing the
AuthenticationProvider interface.

['daoAuthenticationProvider’, Bean names of
providerNames 'anonymousAuthenticationProvider’, authentication
‘rememberM eA uthenticationProvider'] providers.

Use daoAut henti cati onProvi der to authenticate using the User and Role database tables,
remenber MeAut henti cati onProvider to log in with a rememberMe cookie, and
anonynousAut henti cati onProvi der to create an 'anonymous authentication if no other
provider authenticates.

To customize this list, you define a pr ovi der Nanes attribute with a list of bean names. The beans
must be declared either by the plugin, or yourself in r esour ces. gr oovy or resour ces. xm .
Suppose you have a custom MyAut hent i cat i onProvi der inresour ces. gr oovy:

beans = {
nmyAut hent i cati onProvi der (com f oo. M/Aut henti cati onProvi der) {

[l attributes

You register the provider ingr ai | s- app/ conf/ Confi g. groovy as.

grails.plugin.springsecurity.providerNames = |
"myAut henti cati onProvi der',
" anonynousAut henti cati onProvi der' ,
"remenber MeAut henti cati onProvi der']

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/AuthenticationProvider.html

10 Custom UserDetailsService

When you authenticate users from a database using DaoA uthenticationProvider (the default mode in the
plugin if you have not enabled OpenlD, LDAP, and so on), an implementation of UserDetailsService is
required. This class is responsible for returning a concrete implementation of UserDetails. The plugin
provides grai |l s. pl ugi n. springsecurity.userdetails. GormJserDetail sService
as its User Det ai | sServi ce implementation and
grails.plugin.springsecurity.userdetails. GailsUser (which extends Spring
Security's User) asits User Det ai | s implementation.

Y ou can extend or replace Gor mUser Det ai | sSer vi ce with your own implementation by defining a
beaningrai | s-app/ conf/ spring/ resources. groovy (or resour ces. xm) with the same
bean name, user Det ai | sSer vi ce. Thisworks because application beans are configured after plugin
beans and there can only be one bean for each name. The plugin uses an extension of
User Det ai | sSer vi ce, grails.plugin.springsecurity.userdetails.
Grail sUser Det ai | sServi ce, which adds the method User Det ail s
| oadUser ByUser nane(Stri ng usernane, bool ean | oadRol es) to support use cases like
in LDAP where you often infer all roles from LDAP but might keep application-specific user details in
the database. Create the class in src/ groovy and not in grai | s-app/ servi ces - athough the
interface name includes "Service", thisis just a coincidence and the bean wouldn't benefit from being a
Grails service.

In the following example, the User Det ai | s and Gr ai | sUser Det ai | sSer vi ce implementation
adds the full name of the user domain class in addition to the standard information. If you extract extra
data from your domain class, you are less likely to need to reload the user from the database. Most of your
common data can be kept along with your security credentials.

This example adds in af ul | Nane field. Keeping the full name cached avoids hitting the database just
for that lookup. G ai | sUser aready adds thei d value from the domain class to so we can do a more
efficient database load of the user. If all you have is the username, then you need to call
User. fi ndByUser nane(princi pal .usernane), but if you have the id you can call
User. get (princi pal .id). Evenif you have a unique index on the user nane database column,
loading by primary key is usually more efficient because it takes advantage of Hibernate's first-level and
second-level caches.

There is not much to implement other than your application-specific lookup code:

65

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/dao/DaoAuthenticationProvider.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/userdetails/UserDetailsService.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/userdetails/UserDetails.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/userdetails/User.html

package com myconpany. nyapp
import grails.plugin.springsecurity.userdetails.GailsUser

i mport org.springfranmework. security.core. G antedAuthority
i nport org.springframework. security.core.userdetails. User

class MyUserDetails extends Gail sUser {
final String full Name

MyUser Det ai | s(String usernane, String password, bool ean enabl ed,
bool ean account NonExpi red, bool ean credenti al sNonExpi red,
bool ean account NonLocked,
Col | ecti on<Gr ant edAut hority> authoriti es,
long id, String full Nane)
super (usernane, password, enabl ed, account NonExpired,
credenti al sNonExpi red, account NonLocked, authorities, id)

this.full Nane = ful | Name
}
}

package com nyconpany. nyapp

import grails.plugin.springsecurity. SpringSecurityUtils

i mport grails.plugin.springsecurity.userdetails.Gail sUser

import grails.plugin.springsecurity.userdetails.GailsUserDetail sService

i mport grails.transaction. Transacti onal

i mport org.springframework.security.core.authority. G antedAuthorityl npl

i mport org.springframework. security.core.userdetails.UserDetails

i mport org.springframework. security.core.userdetails.UsernameNot FoundExcepti on

class MyUserDetail sService inplenents Gail sUserDetail sService {
/**
* Sonme Spring Security classes (e.g. Rol eH erarchyVoter) expect at | east
* one role, so we give a user with no granted roles this one which gets
* past that restriction but doesn't grant anything.
*/
static final List NO ROLES =
[new Grant edAut horityl nmpl (SpringSecurityUils. NO ROLE)]

UserDetai |l s | oadUser ByUser nanme(Stri ng usernanme, bool ean | oadRol es)
t hrows User nameNot FoundExcepti on {
return | oadUser ByUser nane(user nane)

}

@r ansact i onal (readOnl y=true,
noRol | backFor=[|11 egal Ar gunent Excepti on, User naneNot FoundExcepti on])
UserDetails | oadUser ByUser nanme(String usernane)
t hrows User naneNot FoundExcepti on {

User user = User.findByUsernane(usernane)
if (luser) throw new UsernaneNot FoundExcepti on(
"User not found', usernane)

def authorities = user.authorities.collect {
new G ant edAut horitylnpl (it.authority)
}

return new MyUserDet ai | s(user. usernane, user.password,
user. enabl ed, !'user.account Expired, !user.passwordExpired,
luser. account Locked, authorities ?: NO RCLES, user.id,
user.firstName + " " + user. | ast Nane)

66

The <code>loadUserByUsername</code> method is transactional, but read-only, to avoid lazy loading
exceptions when accessing the aut hor i t i es collection. There are obviously no database updates here
but thisis a convenient way to keep the Hibernate Sessi on open to enable accessing the roles.

To use your implementation, register it in gr ai | s- app/ conf/ spri ng/resources. groovy like
this:

beans = {
user Det ai | sServi ce(com nyconpany. nyapp. MyUser Det ai | sSer vi ce)
}

Another option for loading users and roles from the database is to subclass
grails.plugin.springsecurity.userdetails. GormJserDetail sService - the
methods are all protected so you can override as needed.

This approach works with all beans defined in
SpringSecurityCoreG ail sPlugin.doWthSpring() - you can replace or subclass any of
the Spring beans to provide your own functionality when the standard extension mechanisms are
insufficient.

Flushing the Cached Authentication

If you store mutable data in your custom User Det ai | s implementation (such as full name in the
preceding example), be sure to rebuild the Authentication if it changes.
springSecurityService hasar eaut henti cat e method that does this for you:

class MyController {
def springSecurityService

def soneAction() {
def user = ..
/'l update user data
user. save()
springSecurityService.reauthenticate user.usernanme

67

11 Password and Account Protection

The sections that follow discuss approaches to protecting passwords and user accounts.

11.1 Password Hashing

By default the plugin uses the bcrypt algorithm to hash passwords. You can customize this with the
grails.plugin.springsecurity. password. al gorithm attribute as described below. In
addition you can increase the security of your passwords by adding a salt, which can be afield of the
User Det ai | s instance, aglobal static value, or any custom value you want.

bcrypt is a much more secure alternative to the message digest approaches since it supports a
customizable work level which when increased takes more computation time to hash the users' passwords,
but also dramatically increases the cost of brute force attacks. Given how easy it is to use GPUs to crack
passwords, you should definitely consider using berypt for new projects and switching to it for existing
projects. Note that due to the approach used by bcrypt, you cannot add an additional salt like you can with
the message digest algorithms.

Enable berypt by using the' berypt ' vauefor theal gori t hmconfig attribute:

grails.plugin.springsecurity.password. al gorithm = "bcrypt'

and optionally changing the number of rekeying rounds (which will affect the time it takes to hash
passwords), e.g.

grails.plugin.springsecurity.password. bcrypt.|ogrounds = 15

Note that the number of rounds must be between 4 and 31.

PBKDF2 is also supported.

The table shows configurable password hashing attributes.

If you want to use a message digest hashing algorithm, see this Java page for the available algorithms.

passwordEncoder algorithm; 'berypt’ to use berypt, 'pbkdf2' to
password.algorithm ‘berypt' use PBKDF2, or any message digest algorithm that is
supported in your JDK

password.encodeHashAsBase64 f al se If t r ue, Base64-encode the hashed password.

password.bcrypt.logrounds 10 the number of rekeying rounds to use when using bcrypt

the number of iterations which will be executed on the

password.hash.iterations 10000 hashed password/salt.

11.2 Salted Passwords

68

https://en.wikipedia.org/wiki/Bcrypt
https://www.google.com/search?q=gpu+password+cracking
https://www.google.com/search?q=gpu+password+cracking
https://en.wikipedia.org/wiki/PBKDF2
https://docs.oracle.com/javase/8/docs/technotes/guides/security/StandardNames.html
https://en.wikipedia.org/wiki/PBKDF2

The Spring Security plugin uses hashed passwords and a digest algorithm that you specify. For enhanced
protection against dictionary attacks, you should use a salt in addition to digest hashing.

& Note that if you use berypt (the default setting) or pbkdf2, do not configure a salt
(e.g. the dao. refl ecti onSal t Sour ceProperty property or a custom
sal t Sour ce bean) because these algorithms use their own internally.

There are two approaches to using salted passwords in the plugin - defining afield inthe User Det ai | s
classto access by reflection, or by directly implementing SaltSource yourself.

dao.reflectionSaltSourceProperty

Setthedao. ref | ecti onSal t Sour cePr operty configuration property:

grails.plugin.springsecurity.dao.reflectionSaltSourceProperty = 'usernang'

This property belongs to the UserDetails class. By default it is an instance of
grails.plugin.springsecurity.userdetails. G ail sUser, which extends the standard
Spring Security User class and not your 'person’ domain class. This limits the available fields unless you
useacustomUser Det ai | sSer vi ce.

As long as the username does not change, this approach works well for the salt. If you choose a property
that the user can change, the user cannot log in again after changing it unless you re-hash the password
with the new value. So it's best to use a property that doesn't change.

Another option isto generate a random salt when creating users and store this in the database by adding a
new field to the 'person’ class. This approach requires a custom User Det ai | sSer vi ce because you
need a custom User Det ai | s implementation that also has a 'salt’ property, but thisis more flexible and
works in cases where users can change their username.

SystemWideSaltSource and Custom SaltSource

Spring Security suppliesasimple Sal t Sour ce implementation, SystemWideSaltSource, which uses the
same salt for each user. It's less robust than using a different value for each user but still better than no salt
at al.

An example override of the salt source bean using SystemWideSaltSource would look like this:

i mport org.springfranmework. security.authentication. dao. Syst em deSal t Sour ce
beans = {
sal t Sour ce(Syst emW deSal t Sour ce) {
systeniWdeSalt = 'the_salt_val ue

To have full control over the process, you can implement the Sal t Sour ce interface and replace the
plugin's implementation with your own by defining a bean in
grail s-app/ conf/spring/resources. groovy withthenamesal t Sour ce:

69

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/dao/SaltSource.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/userdetails/User.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/dao/SystemWideSaltSource.html

beans = {
sal t Sour ce(com f oo. bar. MySal t Source) {
/'l set properties
}

}

Hashing Passwords

Regardless of the implementation, you need to be aware of what value to use for a salt when creating or
updating users, for example, in a User Control | er's save or updat e action. When hashing the
password, you use the two-parameter version of spri ngSecuri t yServi ce. encodePassword():

class UserController {
def springSecurityService

def save() {
def userlnstance = new User (parans)
user | nstance. password = springSecurityService. encodePasswor d(
par ans. passwor d, user | nstance. usernane)
if (luserlnstance.save(flush: true)) {
render view. 'create', nodel: [userlnstance: userlnstance]

return

fl ash. nessage = "The user was created"
redi rect action: show, id: userlnstance.id
}

def update() {
def userlnstance = User. get(parans.id)

i f (parans. password) {
par ans. password = springSecurityService. encodePasswor d(

par ams. passwor d, user | nstance. user name)

userlnstance. properties = paranms
if (luserlnstance.save(flush: true)) {
render view. 'edit', nodel: [userlnstance: userlnstance]

return

}

i f (springSecurityService.|loggedlin &
springSecurityService. principal.usernane ==
user | nst ance. user nane)
springSecurityService.reaut henticate userlnstance. usernane

flash. nessage = "The user was updat ed"
redi rect action: show, id: userlnstance.id

& If you are encoding the password in the User domain class (using bef or el nsert
and encodePassword) then don't call
springSecurityServi ce. encodePassword() in your controller since
you'll double-hash the password and users won't be able to log in. It's best to
encapsulate the password handling logic in the domain class. In newer versions of
the plugin (version 1.2 and higher) code is auto-generated in the user class so you'll

need to adjust that password hashing for your salt approach.

70

11.3 Account Locking and Forcing Password Change

Spring Security supports four ways of disabling a user account. When you attempt to log in, the
User Det ai | sSer vi ce implementation creates an instance of User Det ai | s that uses these
accessor methods:

® i sAccount NonExpi red()

® i sAccount NonLocked()

® isCredenti al sNonExpi red()

® i sEnabl ed()
If you use the s2-quickstart script to create a user domain class, it creates a class with corresponding
properties to manage this state.

When an accessor returnst r ue for account Expi r ed, account Locked, or passwor dExpi r ed
or returnsf al se for enabl ed, a corresponding exception is thrown:

i sAccount NonExpi red() account Expi red AccountExpiredException
i sAccount NonLocked() account Locked LockedException

i sCredenti al sNonExpi red() passwor dExpired CredentialsExpiredException

I sEnabl ed() enabl ed DisabledException

Y ou can configure an exception mapping in Conf i g. gr oovy to associate a URL to any or all of these
exceptions to determine where to redirect after afailure, for example:

gral I's. plugin. springsecurity.failureHandl er. excepti onMappi ngs = [
org. spri ngframewor k. security. aut henti cati on. LockedExcepti on'
"/ user/account Locked'

'org. springframewor k. securi ty. aut henticati on. Di sabl edExcepti on':
"/ user/account Di sabl ed' ,

"org. springframewor k. security. aut henti cati on. Account Expi redExcepti on':
"/ user/account Expired',

"org. springframewor k. security. authentication. Credenti al SExpiredException':
"/ user/ passwor dExpi r ed’

Without a mapping for a particular exception, the user is redirected to the standard login fail page (by
default / | ogi n/ aut hf ai |), which displays an error message from this table:

71

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/AccountExpiredException.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/LockedException.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/CredentialsExpiredException.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/authentication/DisabledException.html

errors.login.disabled "Sorry, your account is disabled.”

errors.login.expired "Sorry, your account has expired.”

errors.login.passwordExpired "Sorry, your password has expired."

errors.login.locked "Sorry, your account is locked."

"Sorry, we were not able to find a user with that username and

errors.login.fail password."

You can customize these messages by setting the corresponding property in Confi g. gr oovy, for
example:

grails.plugin.springsecurity.errors.login.locked = "None shall pass."

You can use this functionality to manually lock a user's account or expire the password, but you can
automate the process. For example, use the Quartz plugin to periodically expire everyone's password and
force them to go to a page where they update it. Keep track of the date when users change their passwords
and use a Quartz job to expire their passwords once the password is older than a fixed max age.

Here's an example for a password expired workflow. Y ou'd need a simple action to display a password
reset form (similar to the login form):

def passwor dExpired() {
[usernane: session[' SPRI NG SECURI TY_LAST_ USERNAME']]

and the form would look something like this:

72

https://grails.org/plugin/quartz

<div id='login >
<div class="inner'>
<g:if test='"${fl ash. nessage}' >
<di v class="Ilogi n_nessage' >${f| ash. nessage} </ di v>
</[g:if>
<di v class='fheader' >Pl ease update your password..</div>
<g: form acti on=" updat ePassword' i d="' passwor dReset For n
cl ass='cssform autoconpl ete='of f'>
<p>
<l abel for="usernane' >User nane</| abel >
${user nane} </ span>
</ p>
<p>
<l abel for="password' >Current Password</| abel >
<g: passwor dFi el d name=' password' class="text_ ' />
</ p>
<p>
<| abel for="password' >New Passwor d</ | abel >
<g: passwor dFi el d nanme=' password_new class="text ' />
</ p>
po
<| abel for="'"password' >New Password (again)</I| abel >
<g: passwor dFi el d nane=' password_new 2' class="text_' />
</ p>
po
<i nput type='submit' val ue='Reset' />
</ p>
</g:fornp
</div>
</ di v>

It's important that you not alow the user to specify the username (it's available in the HTTP session) but
that you require the current password, otherwise it would be simple to forge a password reset.

The GSP form would submit to an action like this one;

73

def updat ePassword()
String usernane = session[' SPRI NG SECURI TY_LAST USERNANE']
if (lusernane) {

flash. nessage = 'Sorry, an error has occurred
redirect controller: "login', action: 'auth'
return

}

String password = parans. password
String newPassword = parans. password_new
String newPassword2 = parans. password_new 2
if (!password || !'newPassword || !newPassword2 ||
newPassword ! = newPasswor d2) ({
fl ash. nessage =
'Pl ease enter your current password and a valid new password'
render view ' passwordExpired',
nodel : [username: session[' SPRI NG SECURI TY_LAST USERNAME']]
return

}

User user = User.findByUser nane(user nane)
i f (!passwordEncoder.isPasswordValid(user. password,
password, null /*salt*/)) {
flash. nessage = 'Current password is incorrect
render view ' passwordExpired',
nodel : [usernanme: session[' SPRI NG SECURI TY_ LAST USERNAME']]
return

}

i f (passwordEncoder. i sPasswordVal i d(user. password, newPassword,
null /*salt*/)) {
flash. nessage =
' Pl ease choose a different password from your current one
render view ' passwordExpired',
nodel : [usernane: session[' SPRI NG SECURI TY_ LAST USERNAME']]
return

}

user. password = newPassword
user . passwor dExpired = fal se
user.save() // if you have password constraints check them here

redirect controller: "login', action: 'auth'

}

User Cache

If the cacheUser s configuration property is set to t r ue, Spring Security caches User Detai | s
instances to save trips to the database. (The default is f al se.) This optimization is minor, because
typically only two small queries occur during login -- one to load the user, and one to load the authorities.

If you enable this feature, you must remove any cached instances after making a change that affects login.
If you do not remove cached instances, even though a user's account is locked or disabled, logins succeed
because the database is bypassed. By removing the cached data, you force at trip to the database to
retrieve the latest updates.

Here is a sample Quartz job that demonstrates how to find and disable users with passwords that are too
old:

74

package com nyconpany. myapp
cl ass ExpirePasswordsJob {

static triggers = {
cron nane: 'nyTrigger', cronExpression: '0 0 0 * * ?' // mdnight daily
}

def user Cache
voi d execute() {

def users = User. executeQuery(
‘from User u where u.passwordChangeDate <= :cutof fDate',
[cutof fDate: new Date() - 180])

for (user in users) {
[l flush each separately so one failure
/] doesn't rollback all of the others
try {
user . passwor dExpi red = true
user.save(flush: true)
user Cache. renoveUser Fr onCache user. user nane

}
catch (e) {
| og. error "problemexpiring password for user $user.usernane :

$e. nessage", e

}
}
}

75

12 URL Properties
The table shows configurable URL -related properties.

apf.filterProcessesUrl

'lj_spring_security _check'

Login form post URL, intercepted by
Spring Security filter.

apf.usernameParameter '|_username' Login form username parameter.
apf.passwordParameter '|_password' Login form password parameter.

. . Whether to alow authentication to
apf.alowSessionCreation true create an HTTP session.

Whether to allow only POST login

apf.postOnly true requests.
apf.continueChainBefore fal se whether to continue calling
Successful Authentication subsequent filtersin the filter chain
apf storel astUsername fal se Whether to store the login username

inthe HTTP session

failureHandler.
defaultFailureUrl

'login/authfail2ogin_error=1'

Redirect URL for failed logins.

failureHandler.
ajaxAuthFailUrl

'login/authfail ?ajax=true’

Redirect URL for failed Ajax logins.

failureHandler.

Map of exception class name
(subclass of AuthenticationException

exceotionManninas none) to which the URL will redirect for
P apping that exception type after
authentication failure.
failureHandler. useForward fal se Whether to r_ender the error page (
t rue) or redirect (f al se).

. Whether to enable session creation to
failureHandler. true store the authentication failure
allowSessionCreation :

exception

Default post-login URL if thereis no
SleglelEr A saved request that triggered the
defaultTargetUrl : € 9

login.

If true, aways redirects to the

value of successHandl er.
successHandler. fal se def aul t Tar get Ur | after

alwaysUseDefault

successful authentication; otherwise
redirects to to originally-requested

page.

successHandler.
targetUr|Parameter

'Spring-security-redirect’

Name of optional login form
parameter that specifies destination
after successful login.

76

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/AuthenticationException.html

successHandler. useReferer

fal se

Whether to use the HTTP Ref er er
header to determine post-login
destination.

successHandler.
ajaxSuccessUrl

'/login/gjaxSuccess

URL for redirect after successful
Ajax login.

auth.loginFormuUrl

'lloginfauth’

URL of login page.

auth.forceHttps

fal se

If true, redirects login page
requeststo HTTPS.

auth.gjaxLoginFormuUrl

'floginfauthAjax'

URL of Ajax login page.

auth.useForward

false

Whether to render the login page (
t rue) or redirect (f al se).

logout.afterL ogoutUrl

I/l

URL for redirect after logout.

logout.filterProcessesUrl

'lj_spring_security_logout’

Logout URL, intercepted by Spring
Security filter.

logout.handlerNames

[‘rememberMeServices',
'securityContextL ogoutHandl er']

Logout handler bean names. See
Logout Handlers

If true removes the
Aut henti cati on from the

logout.clearAuthentication true SecurityContext to prevent
issues with concurrent requests
logout.invalidateHttpSession true Wh(_ether 0 mva_\lldate the HTTP
session when logging out
the querystring parameter name for
logout.targetUrl Parameter none the post-logout URL
whether to aways use the
lalf/)vg thjs;[al.)efaultTar U] fal se after Logout Ur | as the
& g post-logout URL
. whether to use the Ref er er header
logout.redirectToReferer fal se value as the post-logout URL
If t rue only POST requests will be
logout.postOnly true allowed to logout
L ocation of the 403 error page (or set
adh.errorPage '/login/denied' to nul | to send a 403 error and not
render a page).
ach.ajaxErrorPage Nlogin/ajaxDenied: Location of the 403 error page for

Ajax requests.

adh.useForward

true

If true aforward will be used to
render the error page, otherwise a
redirect is used

ajaxHeader

'X-Requested-With'

Header name sent by Ajax library,
used to detect Ajax.

ajaxCheckClosure

77

none

An optional closure that can
determine if arequest is Ajax

redirectStrategy.

contextRelative fal se

If true, the redirect URL will be
the value after the request context
path. This results in the loss of
protocol information (HTTP or
HTTPS), so causes problems if a
redirect is being performed to change
fromHTTPto HTTPS or vice versa.

switchUser URLSs

See Switch User, under
Customizing URLSs.

fii.alwaysReauthenticate fal se

If t r ue, re-authenticates when there
is a Aut henti cation in the
Securi t yCont ext

fii.rgectPubliclnvocations true

Disallow URL access when there is
Nno request mapping

fii.validateConfigAttributes true

Whether to check that all
Confi gAttri bute instances are
valid at startup

fii.publishAuthorizationSuccess f al se

Whether to publish an
Aut hori zedEvent after
successful access check

fii.observeOncePerRequest true

If fal se allow checks to happen
multiple times, for example when
JSP forwards are being used and
filter security is desired on each
included fragment of the HTTP
request

78

13 Hierarchical Roles

Hierarchical roles are a convenient way to reduce clutter in your request mappings.

roleHierarchy none Hierarchical role definition.

For example, if you have several types of 'admin’ roles that can be used to access a URL pattern and you
do not use hierarchical roles, you need to specify all the admin roles:

package com myconpany. nyapp
i mport grails.plugin.springsecurity.annotation. Secured
cl ass SomeController {

@ecured([' ROLE_ADM N , ' ROLE_FI NANCE_ADM N, ' ROLE_SUPERADM N])
def sonmeAction() {

}
}

However, if you have a business rule that says ROLE_FI NANCE_ADM N implies being granted
RCLE_ADM N, and that ROLE_SUPERADM N implies being granted ROLE_FI NANCE_ADM N, you can
express that hierarchy as:

grails.plugin.springsecurity.roleH erarchy ="'
ROLE_SUPERADM N > ROLE _FI NANCE_ADM N
ROLE_FI NANCE_ADM N > ROLE_ADM N

Then you can simplify your mappings by specifying only the roles that are required:

package com myconpany. nyapp
i mport grails.plugin.springsecurity.annotation. Secured
cl ass SoneController {

@ecured([' ROLE_ADM N 1)
def sonmeAction() {

}
}

You can also reduce the number of granted roles in the database. Where previously you had to grant
ROLE_SUPERADM N, ROLE_FI NANCE_ADM N, and ROLE_ADM N, now you only need to grant
ROLE_SUPERADM N.

79

14 Switch User

To enable a user to switch from the current Aut henti cati on to another user's, set the
useSwi t chUser Fi | t er attribute to t r ue. This feature is similar to the 'su’ command in Unix. It
enables, for example, an admin to act as aregular user to perform some actions, and then switch back.

@ Thisfeatureis very powerful; it allows full access to everything the switched-to user
can access without requiring the user's password. Limit who can use this feature by
guarding the user switch URL with a role, for example, ROLE_SW TCH_USER,

RCLE_ADM N, and so on.

Switching to Another User

To switch to another wuser, typically you create a form that submits to
/j _spring_security switch_user:

<sec:ifA |l Ganted rol es=' ROLE_ SW TCH USER >

<formaction='/j _spring_security_sw tch_user' nethod="PCST' >

Switch to user: <input type='text' nanme='j_usernane'/>

<i nput type='submit' value='"Switch'/>
</forne

</sec:ifA |G anted>

Here the form is guarded by a check that the logged-in user has ROLE_SW TCH_USER and is not shown
otherwise. You also need to guard the user switch URL, and the approach depends on your mapping
scheme. If you use annotations, add a rule to the control | er Annot ati ons. stati cRul es

attribute:

grails.plugin.springsecurity.controllerAnnotations.staticRules = [

"/j _spring_security switch user':
[' ROLE_SW TCH USER , '"isFullyAuthenticated()"']

If you use Request naps, create arule like this (for example, in Boot St r ap):

new Requestmap(url: '/j _spring _security switch user',
configAttribute: 'ROLE SWTCH USER, i sFul | yAut henti cat ed()"

). save(flush: true)

If you usethe Conf i g. gr oovy map, add the rule there:

80

grails.plugin.springsecurity.interceptUl Map = [

/j _spring_security switch user':
[" ROLE_SW TCH USER , 'isFullyAuthenticated()"']

Switching Back to Original User
To resume asthe original user, navigateto/j _spring_security_exit _user.

<sec:ifSw tched>

Resunme as <sec:sw tchedUser Ori gi nal User nane/ >
</ a>
</sec:ifSw tched>

Customizing URLs
Y ou can customize the URL s that are used for this feature, although it is rarely necessary:

grails.plugin.springsecurity.sw tchUser.sw tchUserUl = ..

grails.plugin.springsecurity.sw tchUser.exitUserUl = ...
grails.plugin.springsecurity.swi tchUser.targetUl = ...
grails.plugin.springsecurity.sw tchUser.sw tchFail ureUrl

useSwitchUserFilter f al se

Whether to use the switch
user filter.

URL to access (via GET or

switchUser. . . : . , .

awitchUserUrl /]_spring_security switch_user POST) to switch to another
user.

switchUser. i soring. security exit user URL to access to switch to

exitUserUrl J_spring_ y_ et another user.

switchUser. Same as URL for redirect after

targetUrl successHandl er. def aul t Tar get Ur | switching.

switchUser. Same as SIRG G [Eellises EHEET £

switchFailureUrl fail ureHandl er. def aul t Fai | ureUr|

error during an attempt to
switch.

switchUser. SwitchUserFilter.

The username request

usernameParameter SPRI NG_SECURI TY_SW TCH_USERNANME_KEY parameter name

GSP Code

81

One approach to supporting the switch user feature is to add code to one or more of your GSP templ ates.
In this example the current username is displayed, and if the user has switched from another (using the

sec: i f Sw t ched tag) then a'resume' link is displayed. If not, and the user has the required role, a
formisdisplayed to alow input of the username to switch to:

<sec: i f Loggedl| n>
Logged in as <sec:usernane/ >
</sec:ifLoggedl n>

<sec:ifSw tched>

Resunme as <sec:sw tchedUser Ori gi nal User nane/ >

</ a>

</sec:ifSw tched>

<sec: i f Not Swi t ched>
<sec:ifAl Ganted rol es=' ROLE SW TCH USER >

<form action="${request.contextPath}/j spring security sw tch user'
nmet hod=' POST' >
Switch to user: <input type='text' nane='j usernane'/>

<input type='submit' value='"Switch'/>
</ form

</sec:ifA | Ganted>
</ sec:if Not Swi t ched>

82

15 Filters

There are afew different approaches to configuring filter chains.

Default Approach to Configuring Filter Chains

The default is to use configuration attributes to determine which extra filters to use (for example, Basic
Auth, Switch User, etc.) and add these to the ‘'core' filters. For example, setting
grails.plugin.springsecurity.useSwitchUserFilter = true adds
swi t chUser Processi ngFi | t er to thefilter chain (and in the correct order). The filter chain built
here is applied to all URLs. If you need more flexibility, you can use f i | t er Chai n. chai nMap as
discussed in chainM ap below.

filterNames

To define custom filters, to remove a core filter from the chain (not recommended), or to otherwise have
control over the filter chain, you can specify thef i | t er Nanes property as alist of strings. As with the
default approach, the filter chain built here is applied to all URLSs.

For example:

grails.plugin.springsecurity.filterChain.filterNanes = [

"securityContextPersistenceFilter', 'logoutFilter',

"aut henti cati onProcessingFilter', 'myCustonProcessingFilter',
"renmenber MeAut henticationFilter', 'anonynousAuthenticationFilter',
"exceptionTranslationFilter', 'filterlnvocationlnterceptor'

]

This example creates afilter chain corresponding to the Spring beans with the specified names.

chainMap

Use the fi | t er Chai n. chai nMap attribute to define which filters are applied to different URL
patterns. You define a Map that specifies one or more lists of filter bean names, each with a
corresponding URL pattern.

grails.plugin.springsecurity.filterChain.chainMp = [
"furlpatternl/**": "filterl,filter2,filter3,filter4',
"furlpattern2/**': "filterl,filter3,filter5',

"/**': " JO NED_FI LTERS',

In this example, four filters are applied to URLs matching / ur | patternl/** and three different
filters are applied to URLs matching /url pattern2/**. In addition the special token
JO NED_FI LTERS is applied to al URLs. Thisis a conventient way to specify that all defined filters
(configured either with configuration rules like useSwi t chUser Fil ter or explicitly using
filterNanmes) should apply to this pattern.

The order of the mappings is important. Each URL will be tested in order from top to bottom to find the
first matching one. So you need a/ ** catch-all rule at the end for URLSs that do not match one of the
earlier rules.

83

There's also a filter negation syntax that can be very convenient. Rather than specifying all of the filter
names (and risking forgetting one or putting them in the wrong order), you can use the
JO NED_FI LTERS keyword and one or more filter names prefixed with a - . This means to use all
configured filters except for the excluded ones. For example, if you had a web service that uses Basic
Auth for / webser vi ce/ ** URLS, you would configure that using:

grails.plugin.springsecurity.filterChain.chainMp = [

"/webservice/ **': ' JO NED _FILTERS, - exceptionTranslationFilter',

'/**':
" JO NED_FI LTERS, - basi cAut henti cati onFilter, -basi cExcepti onTransl ationFilter'
]

For the /webservice/** URLs, we want all filters except for the standard
Excepti onTransl ati onFi | t er since we want to use just the one configured for Basic Auth. And
for the / ** URLs (everything else) we want everything except for the Basic Auth filter and its
configured Excepti onTransl ati onFil ter.

Additionally, you can use a chai nMap configuration to declare one or more URL patterns which should
have no filters applied. Usethe name' none' for these patterns, e.g.

grails.plugin.springsecurity.filterChain.chainMap = [
"/soneurl pattern/**': 'none'
"[**': " JO NED_FI LTERS

clientRegisterFilter

An aternative to setting the fi | t er Names property is grail s. pl ugi n. springsecurity.
SpringSecurityUtils.clientRegisterFilter().Thisproperty alowsyou to add acustom
filter to the chain at a specified position. Each standard filter has a corresponding position in the chain
(seegrails.plugin.springsecurity. SecurityFilterPosition for details). So if you
have created an application-specific filter, register it in
grail s-app/ conf/spring/resources. groovy:

beans = {

myFi | ter (com nyconpany. nyapp. MyFilter) {
/'l properties

and thenregisteritingr ai | s- app/ conf/ Boot St r ap. gr oovy:

i nport grails.plugin.springsecurity. SecurityFilterPosition
i mport grails.plugin.springsecurity. SpringSecurityUtils

cl ass Boot Strap {
def init ={

SpringSecurityUtils.clientRegisterFilter(
"nyFilter', SecurityFilterPosition. OPENI D FILTER order + 10)

85

This bootstrap code registers your filter just after the Open ID filter (if it's configured). Y ou cannot
register afilter in the same position as another, so it's agood idea to add a small deltato its position to put
it after or before a filter that it should be next to in the chain. The Open ID filter position is just an
example - add your filter in the position that makes sense.

16 Channel Security
Use channel security to configure which URLs require HTTP and which require HTTPS.

portM apper.httpPort 8080 HTTP port your application uses.
portM apper.httpsPort 8443 HTTPS port your application uses.
secureChannel .definition none Map of URL pattern to channel rule

Build aMap under the secur eChannel . defi ni ti on key, where the keys are URL patterns, and the
values are one of REQUI RES_SECURE CHANNEL, REQUI RES | NSECURE_CHANNEL, or
ANY_CHANNEL :

grails.plugin.springsecurity.secureChannel.definition = [

"/login/**": REQUI RES_SECURE_CHANNEL' ,
"/ maps/**' " REQUI RES_| NSECURE_CHANNEL ' ,
"/images/login/**': ' REQU RES SECURE CHANNEL',
"/images/**": " ANY_CHANNEL'

]

URLSs are checked in order, so be sure to put more specific rules before less specific. In the preceding
example, /i mages/ | ogi n/ ** is more specific than /i mages/ **, so it appears first in the
configuration.

Header checking

The default implementation of channel security is fairly simple; if you're using HTTP but HTTPS is
required, you get redirected to the corresponding SSL URL and vice versa. But when using a load
balancer such as an F5 BIG-IP it's not possible to just check secure/insecure. In that case you can
configure the load balancer to set a request header indicating the current state. To use this approach, set
the useHeader CheckChannel Securi ty configuration property tot r ue and optionally change the
header names or values:

grails. plugin.springsecurity.secureChannel . useHeader CheckChannel Security =
true

By default the header name is "X-Forwarded-Proto" and the secure header value is "http" (i.e. if you're
not secure, redirect to secure) and the insecure header value is "https" (i.e. if you're secure, redirect to
insecure). Y ou can change any or al of these default values though:

grails.plugin.springsecurity.secureChannel . secureHeader Nane = '. ..
grails.plugin.springsecurity.secureChannel . secur eHeader Val ue ="
grails.plugin.springsecurity.secureChannel .insecureHeader Nane = '. ..
grails.plugin.springsecurity.secureChannel .insecureHeaderValue = "'..."'

86

17 IP Address Restrictions

Ordinarily you can guard URLs sufficiently with roles, but the plugin provides an extra layer of security
with its ability to restrict by |P address.

ipRestrictions none Map of URL patterns to | P address patterns.

For example, make an admin-only part of your site accessible only from IP addresses of the local LAN or
VPN, such as 192.168.1.xxx or 10.XxX.XXX.XxX. You can also set this up at your firewall and/or routers,
but it is convenient to encapsulate it within your application.

To use this feature, specify ani pRest ri ct i ons configuration map, where the keys are URL patterns,
and the values are IP address patterns that can access those URLS. The IP patterns can be single-value
strings, or multi-value lists of strings. They can use CIDR masks, and can specify either IPv4 or I1Pv6
patterns. For example, given this configuration:

grails.plugin.springsecurity.ipRestrictions = |
"/patternl/**': "123.234.345. 456",
"/pattern2/**': '10.0.0.0/8",
"/pattern3d/**': ['10.10.200.42', '10.10.200.63"]

pat t er n1 URLSs can be accessed only from the external address 123.234.345.456, pat t er n2 URLs
can be accessed only from a 10.xxx.xxx.xxx intranet address, and pat t er n3 URLSs can be accessed only
from 10.10.200.42 or 10.10.200.63. All other URL patterns are accessible from any |P address.

All addresses can always be accessed from localhost regardiess of IP pattern, primarily to support local
devel opment mode.

% You cannot compare |Pv4 and IPv6 addresses, so if your server supports both, you
need to specify the IP patterns using the address format that is actually being used.
Otherwise the filter throws exceptions. One option is to set the
j ava. net . preferl Pv4St ack system property, for example, by adding it to
JAVA OPTSorGRAI LS OPTSas-D ava. net. preferl Pv4St ack=true.

87

https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing

18 Session Fixation Prevention

To guard against session-fixation attacks set the useSessi onFi xat i onPreventi on attribute to
true:

grails. plugin.springsecurity.useSessionFi xati onPrevention = true

Upon successful authentication a new HTTP session is created and the previous session's attributes are
copied into it. If you start your session by clicking a link that was generated by someone trying to hack
your account, which contained an active session id, you are no longer sharing the previous session after
login. Y ou have your own session.

Session fixation is less of a problem now that Grails by default does not include jsessionid in URLSs (see
this JIRA issue), but it's still a good ideato use this feature.

Note that there is an issue when using the cookie-session plugin; see thisissue for more details.

The table shows configuration options for session fixation.

useSessi onFixationPrevention true Whether to use session fixation prevention.

Whether to copy the session attributes of the

sessionFixationPrevention.migrate true . .) .
existing session to the new session after login.

Whether to always create a session even if

sessionFixationPrevention.alwaysCreateSession f al se one did not exist at the start of the request.

88

https://en.wikipedia.org/wiki/Session_fixation
https://jira.grails.org/browse/GRAILS-3364
https://grails.org/plugin/cookie-session
https://github.com/benlucchesi/grails-cookie-session-v2/issues/17

19 Logout Handlers

You register a list of logout handlers by implementing the LogoutHandler interface. The list is called
when a user explicitly logs out.

By default, a securityContext Logout Handl er bean is registered to clear the
SecurityContextHolder. Also, unless you are using Facebook or OpenID, r enenber MeSer vi ces bean
is registered to reset your cookie. (Facebook and OpenlD authenticate externally so we don't have access
to the password to create a remember-me cookie.) If you are using Facebook, a

f acebookLogout Handl er isregistered to reset its session cookies.

To customize thislist, you defineal ogout . handl er Nanes attribute with alist of bean names.

[‘'rememberMeServices’, Logout handler bean
‘securityContextL ogoutHandl er'] names.

logout.handlerNames

The beans must be declared either by the plugin or by you in resources. groovy or
resources. xm . For example, suppose you have a custom MyLogout Handl er in
resour ces. gr oovy:

beans = {
nyLogout Handl er (com f oo. MyLogout Handl er) {
[/ attributes
}

}

Youregisteritingr ai | s- app/ conf/ Confi g. groovy as.

grails.plugin.springsecurity.|ogout.handl er Names = |
'renmenber MeServi ces', 'securityContextlLogoutHandl er', 'nyLogoutHandl er'

]

89

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/web/authentication/logout/LogoutHandler.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/context/SecurityContextHolder.html

20 Voters

You can register alist of voters by implementing the AccessDecisionVoter interface. The list confirms
whether a successful authentication is applicable for the current request.

voterNames ['authenticatedV oter', 'roleVoter', ‘webExpressionVoter'] Bean names of voters.

By default ar ol eVot er beanisregistered to ensure users have the required roles for the request, and an
aut henti cat edVoter bean is registered to support |'S AUTHENTI CATED FULLY,
I S AUTHENTI CATED REMEMBERED, and | S AUTHENTI CATED ANONYMOUSLY tokens.

To customize this list, you define avot er Nanes attribute with alist of bean names. The beans must be
declared either by the plugin, or yourself in resources.groovy or resources.xml. Suppose you have a
custom MyA ccessDecisionV oter in resources.groovy:

beans = {
nmyAccessDeci si onVot er (com f oo. MyAccessDeci si onVoter) {
[/ attributes

Youregisteritingrai | s- app/ conf/ Confi g. groovy as.

grails.plugin.springsecurity.voterNanes = |
"authenticatedVoter', 'roleVoter',
"webExpressi onVoter', 'nyAccessDeci sionVoter'

]

90

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/access/AccessDecisionVoter.html

21 Miscellaneous Properties

active true Whether the plugin is enabled.

Whether to print status messages such as

printStatushessages true "Configuring Spring Security Core ..."

'strict’ mode where a request mapping is
required for all resources; if t r ue make
sure to allow 1 S_AUTHENTI CATED _

(el true ANONYMOUSLY for 7', fjs/**", ‘lcss/**",
‘limages/**', ‘/login/**", '/logout/**', and
so on.

anon. key ‘foo’ anonymousProcessingFilter key.

grails.plugin.springsecurity.
atr. anonymousClass authentication. GrailsAnonymous Anonymous token class.

AuthenticationToken
useHttpSession fal se If t r ue, an HttpSession EventPublisher
EventPublisher will be configured.
If true, logins are cached using an
cacheUsers fal se EhCache. See Account Locking and
Forcing Password Change, under User
Cache.
useSecurit | f true, configure
. y fal se SecurityEventLi stener. See
EventListener
Events.

Which property to use for the
none reflection-based salt source. See Salted
Passwords

if true, throws a new
BadCr edenti al sException if a
username is not found or the password
isincorrect, but if f al se re-throws the
true User naneNot FoundExcepti on

dao. reflectionSalt
SourceProperty

dao. hideUserNot

FoundExceptions thrown by User Det ai | sService
(considered less secure than throwing
BadCr edent i al sExcepti on for
both exceptions)

requestCache. Whether caching SavedRequest can

: true . . .
createSession trigger the creation of a session.

Hierarchical role definition. See
Hierarchical Role Definition.

roleHierarchy none

[‘authenticatedV oter’, 'roleVoter'

voterNames ‘closureVoter']

" Bean names of voters. See Voters.

91

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/web/session/HttpSessionEventPublisher.html

providerNames

['daoA uthenticationProvider’,

‘anonymousA uthenticationProvider',
‘rememberM eA uthenticationProvider']

Bean names of authentication providers.
See Authentication Providers.

Type of request mapping to use, one of
"Annotation”, "Requestmap”, or
"InterceptUrIMap” (or the

securityConfigType 'Annotation’ corresponding enum value from
SecurityConfigType). See
Configuring Request Mappings to
Secure URLs.
controllerAnnotations. true Whether to do URL comparisons using
lowercase lowercase.
controllerAnnotations. Extrarules that cannot be mapped using
. none :
staticRules annotations.
Request mapping definition when using
interceptUrIMap none "InterceptUrIMap”. See Simple Map in
Config.groovy.
If t rue, registers a LoggerListener that
registerLoggerListener f al se logs interceptor-related application
events.
Whether to allow creating a session in
scr. true t h e
allowSessionCreation securityCont ext Repository
bean
scr. true Whether to disable URL rewriting (and

disableUr|Rewriting

the jsessionid attribute)

scr. springSecurity

Ht t pSessi onSecurity
Cont ext Repository.

The HTTP session key to store the

ContextKey SPRI NG_SECURI TY_ Securi t yCont ext under
CONTEXT_KEY
Whether to eagerly create a session in
scpf. forceEager fal se t h e
SessionCreation securityCont ext Repository

bean

sch. strategyName

Securi t yCont ext Hol der .

MCODE_ THREADL OCAL

The strategy to use for storing the

Securi t yCont ext - can be one of

MODE_ THREADL OCAL,

MODE_| NHERI TABLETHREADL OCAL
, or MODE_GLOBAL, or the name of a
class implementing

SecurityContextHolderStrategy

debug. useFilter

fal se

Whether to use the DebugFi | t er to
log request debug information to the
console

92

https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/access/event/LoggerListener.html
https://docs.spring.io/spring-security/site/docs/3.2.x/apidocs/org/springframework/security/core/context/SecurityContextHolderStrategy.html

providerManager.
eraseCredentials
AfterAuthentication

true

Whether to remove the password from
the Aut henti cati on and its child
objects after successful authentication

93

22 Tutorials

22.1 Using Controller Annotations to Secure URLsS

1. Create your Grails application.

$ grails create-app bookstore
$ cd bookstore

2. Install the plugin by adding it to BuildConfig.groovy

pl ugi ns {

Eénpile ':spring-security-core:2.0.0

Run the compile script to resolve the dependencies and ensure everything is correct:

$ grails conpile

3. Create the User and Role domain classes.

$ grails s2-quickstart comtestapp User Role

Y ou can choose your names for your domain classes and package; these are just examples.

& Depending on your database, some domain class names might not be valid,
especially those relating to security. Before you create names like "User" or
"Group", make sure they are not reserved keywords in your database. or escape the
name with backticksin the mappi ng block, e.g.

static mapping = {
table ' user’
}

The script creates this User class:

94

package com test app

i mport groovy.transform Equal sAndHashCode
i mport groovy.transform ToStri ng

@qual sAndHashCode(i ncl udes="' user nane')
@osString(includes="usernane', includeNanes=true, includePackage=fal se)
class User inplenments Serializable {

private static final |ong serialVersionUD =1
transi ent springSecurityService

String usernane
String password
bool ean enabl ed = true
bool ean account Expi red
bool ean account Locked
bool ean passwor dExpi r ed

User (String usernane, String password) {
t his()
thi s. usernane
thi s. password

user nane
passwor d

Set <Rol e> get Aut horities() {
User Rol e. fi ndAl | ByUser (this)*.rol e
}

def beforelnsert() {
encodePasswor d()
}

def beforeUpdate() {
if (isDirty('password')) {
encodePasswor d()
}

}

protected void encodePassword() {
password = springSecurityService?. passwor dEncoder ?
springSecurityServi ce. encodePasswor d(passwor d)
passwor d

static transients = ['springSecurityService']

static constraints = {
username bl ank: fal se, unique: true
password bl ank: false

static mapping = {
password columm: ' password’

& Earlier versions of the plugin didn't include password hashing logic in the domain
class, but it makes the code a lot cleaner.

and this Role class:

95

package com test app

i mport groovy.transform Equal sAndHashCode
i mport groovy.transform ToStri ng

@qual sAndHashCode(i ncl udes="aut hority")
@oString(includes="authority', includeNames=true, includePackage=fal se)
class Role inplenments Serializable {

private static final |ong serialVersionUD =1
String authority
Rol e(String authority) {

t his()

this.authority = authority
}

static constraints = {
authority blank: false, unique: true
}

static mapping = {
cache true
}

}

and adomain class that maps the many-to-many join class, User Rol e:

package com test app

i mport grails.gorm DetachedCriteria
i mport groovy.transform ToString

i mport org.apache. conmons. | ang. bui | der. HashCodeBui | der

@oString(cache=true, includeNanes=true, includePackage=fal se)
class UserRol e inplements Serializable {

private static final |ong serial VersionU D =1

User user
Role rol e

User Rol e(User u, Role r) {
t his()
user
rol e

u
r

}
@verride

bool ean equal s(other) {
if (!(other instanceof UserRole)) {
return false
}

other.user?.id == user?.id & other.role?.id == role?.id

@verride
i nt hashCode() {
def buil der = new HashCodeBui | der ()
if (user) buil der.append(user.id)
if (role) builder.append(role.id)
bui | der . t oHashCode()

}

static UserRole get(long userld, long roleld) {
criteriaFor(userld, roleld).get()
}

96

static bool ean exists(long userld, long roleld) {
criteriaFor(userld, roleld).count()
}

private static DetachedCriteria criteriaFor(long userld, long roleld) {
User Rol e. where {
user == User.|load(userld) &&
role == Rol e. | oad(rol el d)
}
}

static UserRol e create(User user, Role role, boolean flush = false) {
def instance = new UserRol e(user: user, role: role)
i nstance. save(flush: flush, insert: true)

i nstance
}
static bool ean renove(User u, Role r, boolean flush = fal se) {
if (u=null || r == null) return false

int rowCount = UserRole.where { user == u & role ==r }.deleteAll ()
if (flush) { UserRole.withSession { it.flush() } }

r owCount
}
static void renoveAll (User u, boolean flush = false) {
if (u==null) return

User Rol e. where { user == u }.deleteAll ()
if (flush) { UserRole.w thSession { it.flush() } }
}

static void renoveAl |l (Role r, boolean flush = fal se) {
if (r == null) return

UserRol e.where { role ==r1 }.deleteAl ()
if (flush) { UserRole.withSession { it.flush() } }
}

static constraints = {
role validator: { Role r, UserRole ur ->
if (ur.user == null || ur.user.id == null) return
bool ean existing = fal se
User Rol e. wi t hNewSessi on {
exi sting = UserRol e. exi sts(ur.user.id, r.id)

}
if (existing) {
return 'userRol e. exi sts'

}
}
}
static mapping = {
id conposite: ['"user', "role']
version fal se
}

The script has edited gr ai | s- app/ conf/ Confi g. gr oovy and added the configuration for your
domain classes. Make sure that the changes are correct.

&y These generated files are not part of the plugin - these are your application files.
They are examples to get you started, so you can edit them as you please. They
contain the minimum needed for the plugin's default implementation of the Spring
Security User Det ai | sServi ce (which like everything in the plugin is
customizable).

97

The plugin has no support for CRUD actions or GSPs for your domain classes;, the
spring-security-ui plugin suppliesa Ul for those. So for now you will create roles and users in
grai |l s-app/ conf/ Boot Strap. groovy. (Seestep 7.)

4. Create a controller that will be restricted by role.

$ grails create-controller comtestapp. Secure

This command creates grail s-app/controllers/conftestapp/
SecureControl | er. groovy. Add some output so you can verify that things are working:

package com test app

cl ass SecureController {
def index() {
render ' Secure access only'
}

}

5. Edit grails-app/conf/BootStrap.groovy to add a test user.

i mport comtestapp. Rol e
i nport com testapp. User
i mport comtestapp. UserRol e

class Boot Strap {
def init = { servletContext ->

def admi nRol e = new Rol e(' ROLE_ADM N). save()
def userRole = new Rol e(' ROLE USER). save()

def testUser = new User('ne', 'password').save()

User Rol e. create testUser, adm nRole, true

assert User.count() == 1
assert Role.count() == 2
assert UserRole.count() == 1
}
}

Some things to note about the preceding Boot St r ap. gr oovy:

® The example does not use a traditional GORM many-to-many mapping for the User<->Role
relationship; instead you are mapping the join table with the User Rol e class. This performance
optimization hel ps significantly when many users have one or more common roles.

* We explicitly flush (using the 3-arg User Rol e. cr eat e() call) because Boot St r ap does not
run in atransaction or OpenSessioninView.

6. Start the server.

98

$ grails run-app

7. Before you secure the page, navigate to http://localhost:8080/bookstore/secure
to verify that you cannot access see the page yet. You will be redirected to the
login page, but after a successful authentication (log in with the username and
password you used for the test user in BootStrap.groovy) you will see an error

page:

Sorry, you're not authorized to view this page.

This is because with the default configuration, all URLs are denied unless there is an access rule
specified.

8. Edit grails-app/controllers/SecureController.groovy to import the annotation
class and apply the annotation to restrict (and grant) access.

package com testapp
i mport grails.plugin.springsecurity.annotation. Secured
cl ass SecureController {

@ecured(' ROLE_ADM N)
def index() {
render 'Secure access only'
}

}

or

@secur ed(' ROLE_ADM N)
cl ass SecureController {
def index() {
render 'Secure access only'
}
}

Y ou can annotate the entire controller or individual actions. In this case you have only one action, so you
can do either.

9. Shut down the app and run grail s run-app again, and navigate again to
http://localhost:8080/bookstore/secure.

This time you should again be able to see the secure page after successfully authenticating.

10. Test the Remember Me functionality.

99

http://localhost:8080/bookstore/secure
http://localhost:8080/bookstore/secure

Check the checkbox, and once you've tested the secure page, close your browser and reopen it. Navigate
again the the secure page. Because a is cookie stored, you should not need to log in again. Logout at any

time by navigating to http://|ocalhost:8080/bookstore/logout.
11. Optionally, create a CRUD Ul to work with users and roles.

Run grails generate-all for the domain classes:

$ grails generate-all comtestapp. User

$ grails generate-all comtestapp.Role

Since the User domain class handles password hashing, there are no changes required in the generated
controllers.

100

http://localhost:8080/bookstore/logout

23 Controller MetaClass Methods

The plugin registers some convenience methods into all controllers in your application. All are accessor
methods, so they can be called as methods or properties. They include:

iIsLoggedIn

Returnst r ue if there is an authenticated user.

class MyController {

def sonmeAction() {
if (isLoggedlin()) {

}

if (!isLoggedin()) {

}
/'l or
if (loggedln) {
} .
if (!'loggedln) {
} .
}
}
getPrincipal

Retrieves the current authenticated user's Principal (a G- ai | sUser instance unless you've customized
this) or nul | if not authenticated.

class MyController {

def soneAction() {
if (isLoggedin()) {
String usernane = getPrincipal ().usernane

}
/1 or

if (isLoggedin()) {
String usernane = principal.usernane

}
}
}

getAuthenticatedUser

101

L oads the user domain class instance from the database that corresponds to the currently authenticated
user, or nul | if not authenticated. This is the equivalent of adding a dependency injection for
springSecurityService and calling

Per sonDomai nCl assNane. get (spri ngSecurityService. principal.id) (the typica
way that thisis often done).

class MyController {

def soneAction() {
if (isLoggedin()) {
String emai|l = getAuthenticatedUser(). enai

}

/1 or

if (isLoggedin()) {
String email = authenticat edUser. enai

}
}
}

102

24 Internationalization

Spring Security Core plugin is provided with i18n messages in several languages.

If you want to customize or translate the texts then add messages for the following keys to your i18n

resource bundle(s) for each exception:

springSecurity.errors.login.expired

"Sorry, your account has
expired.”

AccountExpiredException

springSecurity.errors.login.passwordExpired

"Sorry, your password has
expired.”

Credential sExpiredException

springSecurity.errors.login.disabled

"Sorry, your account is
disabled."

DisabledException

springSecurity.errors.login.locked

"Sorry, your account is
locked."

L ockedException

springSecurity.errors.login.fail

"Sorry, we were not able to
find a user with that
username and password."

Other exceptions

Y ou can customize all messages in auth.gsp and denied.gsp:

springSecurity.login.title Login
springSecurity.login.header Please Login
springSecurity.login.button Login
springSecurity.login.username.label Username
springSecurity.login.password.|abel Password

springSecurity.login.remember.me.label

Remember me

springSecurity.denied.title

Denied

springSecurity.denied.message

Sorry, you're not authorized to view this page.

103

