Table of contents

Openl D authentication support for the Spring Security plugin.

OpenlID authentication support for the Spring Security
plugin. - Reference Documentation

Authors; Burt Beckwith
Version: 2.0-RC2

Table of Contents

1 Introduction to the Spring Security OpeniD Plugin
1.1 History

2 Usage

3 Tutorials
3.1 User registration and linking
3.2 Plain OpeniD

4 Configuration

5 Attribute Exchange

1 Introduction to the Spring Security OpenlID Plugin

The OpenID plugin adds OpenlD login support to a Grails application that uses Spring Security. It
depends on the Spring Security Core plugin.

Using OpenlD authentication frees you from having to maintain passwords for those users, but it also
poses some challenges.

In atypical application that uses form-based logins with Spring Security, all of your user information is
stored in the database. Since an OpenlD user authenticates at an OpenlD provider, you don't maintain
their password but Spring Security needs information to populate an Authentication - username, roles,
and account statuses (enabled, locked, etc.) Only the username is available from the OpenID login (plus
optionally some attributes made available by Attribute Exchange), and the rest is provided by your
application, usually from the database.

The plugin supports two workflows to integrate Openl D authentication with local user accounts. Oneis
user registration, and the other is linking one or more OpenlDs with a valid local account. Both
workflows are triggered by a successful OpenlD authentication followed by a
User naneNot FoundExcept i on indicating that a local user wasn't found. The plugin provides
basic implementations of both workflows but each application is different, so you'll most likely need to
customize and extend the initial implementation.
1.1 History
® Version 2.0-RC2
*® released October 27, 2013
® Version 2.0-RC1
* released October 08, 2013
®* Version1.04
* released July 24, 2012
® Version1.0.3
® released July 31, 2011
® Version1.0.2
® released March 27, 2011
®* Version10.1
® released February 13, 2011
® Version1.0
® released July 27, 2010
®* Verson0.1.1
* released May 12, 2010

® Version0.1

* released May 03, 2010

http://en.wikipedia.org/wiki/OpenID
http://grails.org/plugin/spring-security-core
http://static.springsource.org/spring-security/site/docs/3.0.x/apidocs/org/springframework/security/core/Authentication.html
http://openid.net/specs/openid-attribute-exchange-1_0.html

2 Usage

The central issue with integrating OpenID logins with local application users is that OpenlD providers
can alow multiple login names but the provider response will always be whatever their canonical name
for your identity is. For example, | can login with my Yahoo address bur t beckwi t h@ahoo. com
but w hat is returned IS a URL that looks like
https:// me. yahoo. com a/ Ckkj Y454myx10t d2e05dgasd5Jedt 8VAgg- - ¥27. If | had
registered as aregular user on the site with bur t beckwi t h@ahoo. comas my username, my login
would fail unexpectedly. To get it to work I'd have to know my htt ps:// me. yahoo. coni . ..
name to propertly register, which will frustrate users.

When a user authenticates in Spring Security, an Aut henti cati on is created and stored in a
Thr eadLocal by the Securit yCont ext Hol der. Typicaly the Aut hent i cati on's principal
is an instance of User Det ai | s (in the plugin this is implemented by the Gr ai | sUser class) and
this is a very simple class. It's realy just a POJO with fields for username, password, granted
authorities, and status booleans (enabled, account locked, etc.) So when an OpenlD user has no
associated local account, there's no direct way to specify authorities or the statuses (the password is
optional in this case since that's only used for database authentication). We can assume the user is
enabled as long as the Openl D authentication succeeded, so we really just need a way to determine what
an OpenID user's roles are, otherwise they won't be able to do any more in the application than a
non-authenticated user.

Associating OpenlDs with local accounts

This plugin has two features that address this issues. One is the ability to associate multiple OpenlDs
with auser record. Recall that the Core plugin generates a user class that looks like this:

package com your conmpany. your app
class User {
transi ent springSecurityService

String usernane
String password
bool ean enabl ed = true
bool ean account Expi red
bool ean account Locked
bool ean passwor dExpi red

static transients = ['springSecurityService']

static constraints = {
usernanme bl ank: fal se, unique: true
password bl ank: false

static mappi ng = {
password columm: ' password'

Set <Rol e> get Aut horities() {
User Rol e. fi ndAl | ByUser (this).collect { it.role } as Set
}

def beforelnsert() {
encodePasswor d()
}

def beforeUpdate() {
if (isDirty('password')) {
encodePasswor d()

}

protected void encodePassword() {
password = springSecurityService. encodePasswor d(passwor d)

S0 to use this plugin you need to add a hasMany for a collection of OpenlD domain classes (generated
by the s2-create-openid script) used to store OpenlDs:

package com your conmpany. your app
class User {
transi ent springSecurityService

String usernane
String password
bool ean enabl ed = true
bool ean account Expi red
bool ean account Locked
bool ean passwor dExpi red

static hasMany = [openlds: Openl D
static transients = ['springSecurityService']

static constraints = {
usernanme bl ank: fal se, unique: true
password bl ank: false

static mapping = {
password col um: ' password’'

Set <Rol e> get Aut horities() {
User Rol e. fi ndAl | ByUser (this).collect { it.role } as Set
}

def beforelnsert() {
encodePasswor d()
}

def beforeUpdate() {
if (isDirty(' password')) {
encodePasswor d()
}

}

protected void encodePassword() {
password = springSecurityService. encodePasswor d(passwor d)

Now when an existing user authenticates with OpenlID, you can detect that there's no local database with
that username and display a page where the user can associate that OpenlD with an existing account.
Subsequent authentication attempts will use the plugin's enhanced User Det ai | sSer vi ce that looks
for a user not just by username but also by OpenlD, so OpenlD authenticate attempts work fine, and
form-based logins do too if they provide the correct password.

New accounts

That works for existing accounts, but how do we create these in the first place? When Spring Security
throws a User Not FoundExcept i on after a successful OpenlD login, the plugin detects that the
authentication is a valid OpenlD authentication, and if configured to do so (i.e. if
grails.plugin.springsecurity.openid.registration.autocreate istrue) will
redirect the user to a signup page. This way you can guide them through the process of creating an
account. This is more efficient than presenting a regular registration workflow because their canonical
OpenlD for that provider will already be known and can be associated with the user record.

3 Tutorials

3.1 User registration and linking
In this tutorial we'll cover

® creating a sample application

® installing the plugin

® configuring the plugin

® using the account linking workflow

® using the registration workflow

First, create a new application:

$ grails create-app openi dtest
$ cd openi dt est

Install the Openl D plugin by adding a dependency in BuildConfig.groovy:

pl ugi ns {

runtime ':spring-security-openid:2.0-RCL

}

Thiswill asoinstall the Spring Security Core plugin since it's a dependency of this one.

Runthes2- qui ckstart scri pt toinitiaize the core plugin:

$ grails s2-quickstart com openi dtest User Role

To support the remember-me checkbox, run the s2-creat e- persi st ent -t oken script to
generate adomain class for persistent tokens:

$ grails s2-create-persistent-token
com openi dt est . Persi stent Login

To support linking one or more OpenlDs with local accounts, we need to create an Openl D domain
class:

$ grails s2-create-openid com openi dtest. Qpenl D

and edit the generated user class and add a hasMany for an openl ds property:

package com openi dt est
class User {
transi ent springSecurityService

String usernane
String password
bool ean enabl ed = true
bool ean account Expi red
bool ean account Locked
bool ean passwor dExpi red

static hasMany = [openlds: Openl D]
static transients = ['springSecurityService']

static constraints = {
usernanme bl ank: fal se, unique: true
password bl ank: fal se

static mapping = {
password col umm:

" password’

Set <Rol e> get Aut horities() {
User Rol e. fi ndAl | ByUser (this).collect { it.role } as Set
}

def beforelnsert() {
encodePasswor d()
}

def beforeUpdate() {
if (isDirty(' password')) {
encodePasswor d()
}

}

protected void encodePassword() {
password = springSecurityService. encodePasswor d(passwor d)

Now create some test users and grant them some roles
grail s-app/ conf/ Boot Strap. groovy:

in

i nport com openi dt est. Rol e
i nport com openi dt est. User
i mport com openi dt est. User Rol e

cl ass Boot Strap {

def init = { servletContext ->
def roleAdnmin = new Role(authority: 'ROLE_ADM N). save()
def roleUser = new Role(authority: 'ROLE USER). save()

def user = new User (usernane: 'user', password: 'password', enabled: true
). save()

true).save()

User Rol e. create user, rol eUser
User Rol e. creat e adm n, rol eUser
User Rol e. create adnmin, roleAdnm n, true

def admi n = new User (usernane: 'admn', password: 'password', enabl ed:

The plugin contains an Openl dCont r ol | er but it'll be more natural to accessitscr eat eAccount
action under /login/ and we also want to use this controller's aut h action instead of the core plugin's
Logi nControl | er. aut h since this one supports both OpenlD and regular username/password
logins, so add mappingsingr ai | s- app/ conf/ Ur| Mappi ngs. gr oovy to support these changes.

class Url Mappi ngs {
static mappings = {
“/1ogin/auth" {

controller = 'openld
action = "auth'

"/l ogi n/ openl dCr eat eAccount " {
controller = "'openld
action = 'createAccount'

[T

Now create a controller that's secured with annotations for testing:

$ grails create-controller secure

and add this code:

package openi dt est
i mport grails.plugin.springsecurity.annotation. Secured
class SecureController {

@ecured([' ROLE_ADM N 1)
def adm ns() {
render 'Logged in with ROLE ADM N
}

@ecured(["' ROLE_USER])
def users() {
render 'Logged in with ROLE USER
}

}

and finally we're ready to run the app:

$ grails run-app

Navigate to http://localhost:8080/openidtest/secure/admins and you should be prompted with the login
screen. Leave the Use OpenlD checkbox checked and enter a valid OpenlD. Don't check the
remember-me checkbox yet (it doesn't work with the extended workflows where you create a new user
or link an OpenID) and click the "Log in" button.

10

http://localhost:8080/openidtest/secure/admins

After authenticating at the OpenlD provider, you'll be redirected to the registration page. Note that
there's a link to just associate the current OpenlD with a local account - for now click the "link this
OpenID" link.

At the next screen enter the username and password for the user we created in BootStrap with
ROLE_ADMIN (‘admin'/'password') and you will be redirected to

http://local host:8080/openi dtest/secure/admins

To test that the OpenlD is linked to your account, logout by navigating to
http://|ocal host:8080/openidtest/logout/ and navigate to http://|ocalhost:8080/openi dtest/secure/admins.
Logging out removes the remember-me cookie, so authenticate again with your OpenlD (this time
check the remember-me checkbox) and it should skip the register/link step and go directly to the
secured page. Y ou can also repeat the process and switch to the username/password login and use that.

To test remember-me, close the browser and re-open it, and navigate to
http://|ocal host:8080/openidtest/secure/admins. It should skip the authentication step entirely and show
the page.

User Registration

Now let's create a new user associated with an OpenlD. Logout again and navigate to
http://localhost:8080/openidtest/secure/users to initiate a login for a resource that requires
ROLE_USER.

Since you've aready associated the previous OpenlD with a user, you either need to use a second
OpenlD, or restart the application to clear out the in-memory database.

Login using either the new OpenlD or the original after restarting, and after authenticating externally
you'll be redirected to the registration page. This time create a new user. By default the password
validation rules are rather strict and you can change them, but for now enter a password that's at least 8
characters and contains at least one number and at least one symbol (e.g. !, #, $, %, etc.)

You should be redirected to http://localhost:8080/openidtest/secure/users after creating the account.
Now logout and log back in, both with the username/password for the account you created and the
Openl D you linked and both should work.

3.2 Plain OpenID

In the previous tutorial we went through two workflows to alow linking OpenlDs to local accounts.
Another option isto only support OpenlD logins but not associate them with local accounts. This might
be useful if you want to allow people to perform some basic actions like clicking Like and Don't Like
buttons, adding comments, etc.

To support this, rather than showing the registration page when an authenticated OpenlD user is
redirected to your controller, you could just create an Aut henti cati on for them with dummy
information. Recall that the minimum requirements to populate a User Det ai | s instance are the
username, the status booleans (enabled, locked out, etc.) and one or more granted authorities. Y ou could
emulate a basic application user by using their OpenlD as the username, setting all statusestotr ue,
and granting them avirtual role, e.g. ROLE_OPENI D.

Copy the plugin's

grails. plugin.springsecurity.openid. OpenldController.groovy to your
application's grails-app/controllers directory and replace the existing cr eat eAccount action with
this:.

11

http://localhost:8080/openidtest/secure/admins
http://localhost:8080/openidtest/logout/
http://localhost:8080/openidtest/secure/admins
http://localhost:8080/openidtest/secure/admins
http://localhost:8080/openidtest/secure/users
http://localhost:8080/openidtest/secure/users

def createAccount () {
def config = SpringSecurityUtils.securityConfig
String openld =

sessi on[Openl dAut hent i cati onFai | ur eHandl er. LAST_OPENI D_USERNAME]
if (topenld) {

flash.error = "Sorry, an Openl D was not found'
redirect uri: config.failureHandl er. defaultFail ureUrl
return

}

def user = new Gail sUser(openld, 'password', true, true,
true, true, [new SinpleG antedAuthority(' ROLE OPENID)], 0)

SCH. cont ext . aut henti cati on = new User nanePasswor dAut hent i cati onToken(
user, 'password', user.authorities)

session. renoveAttri bute

Openl dAut hent i cati onFai | ur eHandl er. LAST_OPENI D_USERNAME
sessi on. renoveAttribute

Openl dAut hent i cati onFai | ur eHandl er. LAST_OPENI D_ATTRI BUTES

def savedRequest = request Cache. get Request (request, response)
i f (savedRequest && !config.successHandl er. al waysUseDefaul t) {
redirect url: savedRequest.redirect Ul

el se {
redirect uri: config.successHandl er. def aul t Target Ur |
}

}

You'll need to add these imports:

import grails.plugin.springsecurity.userdetails.GailsUser
i mport org.springframework. security.core.authority.Si npl eG ant edAut hority
i mport org.springframework. security.core.context. SecurityContextHol der as SCH

To test this, add a new action to the secure controller that requires the virtual ROLE_OPENI Drole:

package openi dt est
import grails.plugin.springsecurity.annotation. Secured
class SecureController {

@ecured([' ROLE_ADM N 1)
def admins() {
render 'Logged in with ROLE ADM N
}

@ecured([' ROLE_USER 1)
def users() {
render 'Logged in with ROLE USER
}

@ecured(["' ROLE_ OPENID])
def openid() {
render 'Logged in with ROLE OPEN D
}

}

13

Then start the server with grails run-app and navigate to
http://|ocal host:8080/openidtest/secure/openid, and login using any OpenlD. Once you authenticate and
get redirected back to your application you should see the text Logged in with ROLE _OPENI D
indicating that you're logged in as a basic OpenID user.

Note that since thisis afake role, there's no need to store it in the database since real application users
will never be granted ROLE_OPENID.

http://localhost:8080/openidtest/secure/openid

4 Configuration

There are afew configuration options for OpeniD.

& All of these property

overrides

must be specified in

grail s-app/conf/ Config.groovy using the
grails. plugin.springsecurity suffix, for example

grails.plugin.springsecurity.openid.domai nC ass =
' com nyconpany. nyapp. Openl D

openid.claimedldentity

FiddName ‘openid_identifier'

the login name form parameter

openid.nonceMaxSeconds 300

maximum life of the generated nonce shared
with the OpenlD provider; determines how
long the authentication is allowed to take

the full class name of the many-to-one

openid.registration.

optional Attributes contact/email |

'http://schema.openid.net/

openid.domainClass OpenlD Openi D domain class
whether to encode the password in
openid.encode od fal se Openld.ControIIer.createNewAccount (setto
t rue if not using the new style of User
domain class that auto-encrypts)
if true will redirect valid OpenlD
openid.registration. true authentications to the create and link user
autocreate workflows, otherwise shows the standard
login fail page
openid.registration. : . .
requiredAtiributes none required Attribute Exchange attributes
[email:

optional Attribute Exchange attributes

openid.registration.
createA ccountUri

'/login/openl dCreateA ccount'

redirect address used when
openi d. regi stration. aut ocreate
istrue

openid.registration.

roleNames ['ROLE_USER

alist of names of roles to grant to users who
self-register after an OpenlD authentication;
the roles must already exist

openid.userL ookup.

openldsPropertyName openids

the name of the property in the user class for
the OpenlD domain class collection

14

5 Attribute Exchange
TBD

15

