
1

OpenID authentication support for the Spring Security plugin.

Table of contents

2

OpenID authentication support for the Spring Security
plugin. - Reference Documentation
Authors: Burt Beckwith

Version: 2.0-RC2

Table of Contents

1 Introduction to the Spring Security OpenID Plugin

1.1 History

2 Usage

3 Tutorials

3.1 User registration and linking

3.2 Plain OpenID

4 Configuration

5 Attribute Exchange

3

1 Introduction to the Spring Security OpenID Plugin
The OpenID plugin adds login support to a Grails application that uses Spring Security. ItOpenID
depends on the .Spring Security Core plugin

Using OpenID authentication frees you from having to maintain passwords for those users, but it also
poses some challenges.

In a typical application that uses form-based logins with Spring Security, all of your user information is
stored in the database. Since an OpenID user authenticates at an OpenID provider, you don't maintain
their password but Spring Security needs information to populate an - username, roles,Authentication
and account statuses (enabled, locked, etc.) Only the username is available from the OpenID login (plus
optionally some attributes made available by), and the rest is provided by yourAttribute Exchange
application, usually from the database.

The plugin supports two workflows to integrate OpenID authentication with local user accounts. One is
user registration, and the other is linking one or more OpenIDs with a valid local account. Both
workflows are triggered by a successful OpenID authentication followed by a

 indicating that a local user wasn't found. The plugin providesUsernameNotFoundException
basic implementations of both workflows but each application is different, so you'll most likely need to
customize and extend the initial implementation.

1.1 History
Version 2.0-RC2

released October 27, 2013

Version 2.0-RC1

released October 08, 2013

Version 1.0.4

released July 24, 2012

Version 1.0.3

released July 31, 2011

Version 1.0.2

released March 27, 2011

Version 1.0.1

released February 13, 2011

Version 1.0

released July 27, 2010

Version 0.1.1

released May 12, 2010

Version 0.1

released May 03, 2010

http://en.wikipedia.org/wiki/OpenID
http://grails.org/plugin/spring-security-core
http://static.springsource.org/spring-security/site/docs/3.0.x/apidocs/org/springframework/security/core/Authentication.html
http://openid.net/specs/openid-attribute-exchange-1_0.html

4

5

2 Usage
The central issue with integrating OpenID logins with local application users is that OpenID providers
can allow multiple login names but the provider response will always be whatever their canonical name
for your identity is. For example, I can login with my Yahoo address burtbeckwith@yahoo.com
b u t w h a t i s r e t u r n e d i s a U R L t h a t l o o k s l i k e

. If I hadhttps://me.yahoo.com/a/CkkjY454mYx10td2e05dqasd5Jedt8VAgg--%27
registered as a regular user on the site with as my username, my loginburtbeckwith@yahoo.com
would fail unexpectedly. To get it to work I'd have to know my https://me.yahoo.com/...
name to propertly register, which will frustrate users.

When a user authenticates in Spring Security, an is created and stored in a Authentication
 by the . Typically the 's principalThreadLocal SecurityContextHolder Authentication

is an instance of (in the plugin this is implemented by the class) andUserDetails GrailsUser
this is a very simple class. It's really just a POJO with fields for username, password, granted
authorities, and status booleans (enabled, account locked, etc.) So when an OpenID user has no
associated local account, there's no direct way to specify authorities or the statuses (the password is
optional in this case since that's only used for database authentication). We can assume the user is
enabled as long as the OpenID authentication succeeded, so we really just need a way to determine what
an OpenID user's roles are, otherwise they won't be able to do any more in the application than a
non-authenticated user.

Associating OpenIDs with local accounts

This plugin has two features that address this issues. One is the ability to associate multiple OpenIDs
with a user record. Recall that the Core plugin generates a user class that looks like this:

6

package com.yourcompany.yourapp

class User {

 springSecurityServicetransient

 usernameString
 passwordString
 enabled = boolean true
 accountExpiredboolean
 accountLockedboolean
 passwordExpiredboolean

 transients = ['springSecurityService']static

 constraints = {static
 username blank: , unique: false true
 password blank: false
 }

 mapping = {static
 password column: '`password`'
 }

Set<Role> getAuthorities() {
 UserRole.findAllByUser().collect { it.role } as Setthis
 }

def beforeInsert() {
 encodePassword()
 }

def beforeUpdate() {
 (isDirty('password')) {if
 encodePassword()
 }
 }

 void encodePassword() {protected
 password = springSecurityService.encodePassword(password)
 }
}

So to use this plugin you need to add a for a collection of OpenID domain classes (generatedhasMany
by the script) used to store OpenIDs:s2-create-openid

7

package com.yourcompany.yourapp

class User {

 springSecurityServicetransient

 usernameString
 passwordString
 enabled = boolean true
 accountExpiredboolean
 accountLockedboolean
 passwordExpiredboolean

 hasMany = [openIds: OpenID]static

 transients = ['springSecurityService']static

 constraints = {static
 username blank: , unique: false true
 password blank: false
 }

 mapping = {static
 password column: '`password`'
 }

Set<Role> getAuthorities() {
 UserRole.findAllByUser().collect { it.role } as Setthis
 }

def beforeInsert() {
 encodePassword()
 }

def beforeUpdate() {
 (isDirty('password')) {if
 encodePassword()
 }
 }

 void encodePassword() {protected
 password = springSecurityService.encodePassword(password)
 }
}

Now when an existing user authenticates with OpenID, you can detect that there's no local database with
that username and display a page where the user can associate that OpenID with an existing account.
Subsequent authentication attempts will use the plugin's enhanced that looksUserDetailsService
for a user not just by username but also by OpenID, so OpenID authenticate attempts work fine, and
form-based logins do too if they provide the correct password.

New accounts

That works for existing accounts, but how do we create these in the first place? When Spring Security
throws a after a successful OpenID login, the plugin detects that theUserNotFoundException
authentication is a valid OpenID authentication, and if configured to do so (i.e. if

 is) willgrails.plugin.springsecurity.openid.registration.autocreate true
redirect the user to a signup page. This way you can guide them through the process of creating an
account. This is more efficient than presenting a regular registration workflow because their canonical
OpenID for that provider will already be known and can be associated with the user record.

8

3 Tutorials

3.1 User registration and linking
In this tutorial we'll cover

creating a sample application

installing the plugin

configuring the plugin

using the account linking workflow

using the registration workflow

First, create a new application:

$ grails create-app openidtest
$ cd openidtest

Install the OpenID plugin by adding a dependency in BuildConfig.groovy:

plugins {
 …
 runtime ':spring-security-openid:2.0-RC1'
}

This will also install the Spring Security Core plugin since it's a dependency of this one.

Run the to initialize the core plugin:s2-quickstart script

$ grails s2-quickstart com.openidtest User Role

To support the remember-me checkbox, run the script tos2-create-persistent-token
generate a domain class for persistent tokens:

$ grails s2-create-persistent-token
com.openidtest.PersistentLogin

To support linking one or more OpenIDs with local accounts, we need to create an domainOpenID
class:

$ grails s2-create-openid com.openidtest.OpenID

9

and edit the generated user class and add a for an property:hasMany openIds

package com.openidtest

class User {

 springSecurityServicetransient

 usernameString
 passwordString
 enabled = boolean true
 accountExpiredboolean
 accountLockedboolean
 passwordExpiredboolean

 hasMany = [openIds: OpenID]static

 transients = ['springSecurityService']static

 constraints = {static
 username blank: , unique: false true
 password blank: false
 }

 mapping = {static
 password column: '`password`'
 }

Set<Role> getAuthorities() {
 UserRole.findAllByUser().collect { it.role } as Setthis
 }

def beforeInsert() {
 encodePassword()
 }

def beforeUpdate() {
 (isDirty('password')) {if
 encodePassword()
 }
 }

 void encodePassword() {protected
 password = springSecurityService.encodePassword(password)
 }
}

Now create some test users and grant them some roles in
:grails-app/conf/BootStrap.groovy

import com.openidtest.Role
 com.openidtest.Userimport
 com.openidtest.UserRoleimport

class BootStrap {

def init = { servletContext ->
 def roleAdmin = Role(authority: 'ROLE_ADMIN').save()new
 def roleUser = Role(authority: 'ROLE_USER').save()new

def user = User(username: 'user', password: 'password', enabled: new true
).save()
 def admin = User(username: 'admin', password: 'password', enabled: new

).save()true

UserRole.create user, roleUser
 UserRole.create admin, roleUser
 UserRole.create admin, roleAdmin, true
 }
}

10

The plugin contains an but it'll be more natural to access its OpenIdController createAccount
action under /login/ and we also want to use this controller's action instead of the core plugin's auth

 since this one supports both OpenID and regular username/passwordLoginController.auth
logins, so add mappings in to support these changes:grails-app/conf/UrlMappings.groovy

class UrlMappings {

 mappings = {static

 {"/login/auth"
 controller = 'openId'
 action = 'auth'
 }
 {"/login/openIdCreateAccount"
 controller = 'openId'
 action = 'createAccount'
 }

...

}
}

Now create a controller that's secured with annotations for testing:

$ grails create-controller secure

and add this code:

package openidtest

 grails.plugin.springsecurity.annotation.Securedimport

class SecureController {

@Secured(['ROLE_ADMIN'])
 def admins() {
 render 'Logged in with ROLE_ADMIN'
 }

@Secured(['ROLE_USER'])
 def users() {
 render 'Logged in with ROLE_USER'
 }
}

and finally we're ready to run the app:

$ grails run-app

Navigate to and you should be prompted with the loginhttp://localhost:8080/openidtest/secure/admins
screen. Leave the Use OpenID checkbox checked and enter a valid OpenID. Don't check the
remember-me checkbox yet (it doesn't work with the extended workflows where you create a new user
or link an OpenID) and click the "Log in" button.

http://localhost:8080/openidtest/secure/admins

11

After authenticating at the OpenID provider, you'll be redirected to the registration page. Note that
there's a link to just associate the current OpenID with a local account - for now click the "link this
OpenID" link.

At the next screen enter the username and password for the user we created in BootStrap with
ROLE_ADMIN ('admin'/'password') and you will be redirected to
http://localhost:8080/openidtest/secure/admins

To test that the OpenID is linked to your account, logout by navigating to
 and navigate to .http://localhost:8080/openidtest/logout/ http://localhost:8080/openidtest/secure/admins

Logging out removes the remember-me cookie, so authenticate again with your OpenID (this time
check the remember-me checkbox) and it should skip the register/link step and go directly to the
secured page. You can also repeat the process and switch to the username/password login and use that.

To test remember-me, close the browser and re-open it, and navigate to
. It should skip the authentication step entirely and showhttp://localhost:8080/openidtest/secure/admins

the page.

User Registration

Now let's create a new user associated with an OpenID. Logout again and navigate to
 to initiate a login for a resource that requireshttp://localhost:8080/openidtest/secure/users

ROLE_USER.

Since you've already associated the previous OpenID with a user, you either need to use a second
OpenID, or restart the application to clear out the in-memory database.

Login using either the new OpenID or the original after restarting, and after authenticating externally
you'll be redirected to the registration page. This time create a new user. By default the password
validation rules are rather strict and you can change them, but for now enter a password that's at least 8
characters and contains at least one number and at least one symbol (e.g. !, #, $, %, etc.)

You should be redirected to after creating the account.http://localhost:8080/openidtest/secure/users
Now logout and log back in, both with the username/password for the account you created and the
OpenID you linked and both should work.

3.2 Plain OpenID
In the previous tutorial we went through two workflows to allow linking OpenIDs to local accounts.
Another option is to only support OpenID logins but not associate them with local accounts. This might
be useful if you want to allow people to perform some basic actions like clicking Like and Don't Like
buttons, adding comments, etc.

To support this, rather than showing the registration page when an authenticated OpenID user is
redirected to your controller, you could just create an for them with dummyAuthentication
information. Recall that the minimum requirements to populate a instance are theUserDetails
username, the status booleans (enabled, locked out, etc.) and one or more granted authorities. You could
emulate a basic application user by using their OpenID as the username, setting all statuses to ,true
and granting them a virtual role, e.g. .ROLE_OPENID

C o p y t h e p l u g i n ' s
 to yourgrails.plugin.springsecurity.openid.OpenIdController.groovy

application's grails-app/controllers directory and replace the existing action withcreateAccount
this:

http://localhost:8080/openidtest/secure/admins
http://localhost:8080/openidtest/logout/
http://localhost:8080/openidtest/secure/admins
http://localhost:8080/openidtest/secure/admins
http://localhost:8080/openidtest/secure/users
http://localhost:8080/openidtest/secure/users

12

def createAccount() {

def config = SpringSecurityUtils.securityConfig

 openId =String
session[OpenIdAuthenticationFailureHandler.LAST_OPENID_USERNAME]
 (!openId) {if
 flash.error = 'Sorry, an OpenID was not found'
 redirect uri: config.failureHandler.defaultFailureUrl
 return
 }

def user = GrailsUser(openId, 'password', , ,new true true
 , , [SimpleGrantedAuthority('ROLE_OPENID')], 0)true true new

SCH.context.authentication = UsernamePasswordAuthenticationToken(new
 user, 'password', user.authorities)

session.removeAttribute
OpenIdAuthenticationFailureHandler.LAST_OPENID_USERNAME
 session.removeAttribute
OpenIdAuthenticationFailureHandler.LAST_OPENID_ATTRIBUTES

def savedRequest = requestCache.getRequest(request, response)
 (savedRequest && !config.successHandler.alwaysUseDefault) {if
 redirect url: savedRequest.redirectUrl
 }
 {else
 redirect uri: config.successHandler.defaultTargetUrl
 }
}

You'll need to add these imports:

import grails.plugin.springsecurity.userdetails.GrailsUser
 org.springframework.security.core.authority.SimpleGrantedAuthorityimport
 org.springframework.security.core.context.SecurityContextHolder as SCHimport

To test this, add a new action to the secure controller that requires the virtual role:ROLE_OPENID

package openidtest

 grails.plugin.springsecurity.annotation.Securedimport

class SecureController {

@Secured(['ROLE_ADMIN'])
 def admins() {
 render 'Logged in with ROLE_ADMIN'
 }

@Secured(['ROLE_USER'])
 def users() {
 render 'Logged in with ROLE_USER'
 }

@Secured(['ROLE_OPENID'])
 def openid() {
 render 'Logged in with ROLE_OPENID'
 }
}

13

Then start the server with and navigate to grails run-app
, and login using any OpenID. Once you authenticate andhttp://localhost:8080/openidtest/secure/openid

get redirected back to your application you should see the text Logged in with ROLE_OPENID
indicating that you're logged in as a basic OpenID user.

Note that since this is a fake role, there's no need to store it in the database since real application users
will never be granted ROLE_OPENID.

http://localhost:8080/openidtest/secure/openid

14

4 Configuration
There are a few configuration options for OpenID.

All of these property overrides must be specified in
 using the grails-app/conf/Config.groovy

 suffix, for examplegrails.plugin.springsecurity

grails.plugin.springsecurity.openid.domainClass =
 'com.mycompany.myapp.OpenID'

Name Default Meaning

openid.claimedIdentity
FieldName

'openid_identifier' the login name form parameter

openid.nonceMaxSeconds 300
maximum life of the generated nonce shared
with the OpenID provider; determines how
long the authentication is allowed to take

openid.domainClass 'OpenID'
the full class name of the many-to-one
OpenID domain class

openid.encodePassword false

whether to encode the password in
OpenIdController.createNewAccount (set to

 if not using the new style of Usertrue
domain class that auto-encrypts)

openid.registration.
autocreate

true

if will redirect valid OpenIDtrue
authentications to the create and link user
workflows, otherwise shows the standard
login fail page

openid.registration.
requiredAttributes

none required Attribute Exchange attributes

openid.registration.
optionalAttributes

[e m a i l :
'http://schema.openid.net/
contact/email']

optional Attribute Exchange attributes

openid.registration.
createAccountUri

'/login/openIdCreateAccount'
redirect address used when
openid.registration.autocreate
is true

openid.registration.
roleNames

['ROLE_USER']
a list of names of roles to grant to users who
self-register after an OpenID authentication;
the roles must already exist

openid.userLookup.
openIdsPropertyName

'openIds'
the name of the property in the user class for
the OpenID domain class collection

15

5 Attribute Exchange
TBD

