
1

Shiro support for the Spring Security plugin

Table of contents

2

Shiro support for the Spring Security plugin - Reference
Documentation
Authors: Burt Beckwith

Version: 0.1

Table of Contents

1 Introduction

1.1 History

2 Usage

3 Configuration

3

1 Introduction
The Spring Security Shiro plugin adds some support for using a hybrid approach combining Spring
Security and . It currently only supports Shiro ACLs, since Spring Security ACLs are veryShiro
powerful but can be very cumbersome to use, and the Shiro approach is straightforward and simple.

The majority of the authentication and authorization work is still done by Spring Security. This plugin
listens for Spring Security authentication events and uses the Spring Security Authentication
instance to build and register a Shiro instance. It also removes the Shiro credentials whenSubject
you explicitly logout.

1.1 History
Version 0.1

released January 06, 2013

https://shiro.apache.org/

4

2 Usage
The first step is to add a dependency for the plugin in :BuildConfig.groovy

plugins {
 …
 compile ':spring-security-shiro:0.1'
}

This should pull in the plugin transitively but you can also explicitly addspring-security-core
in a dependency for that, in particular if you want to use a newer version than the plugin requires:

plugins {
 …
 compile ':spring-security-core:1.2.7.3'
}

Permissions

To use the Shiro annotations and methods you need a way to associate roles and permissions with
users. The Spring Security Core plugin already handles the role part for you, so you must configure
permissions for this plugin. There is no script to create a domain class, but it's a very simple class and
easy to create yourself. It can have any name and be in any package, but otherwise the structure must
look like this:

package com.mycompany.myapp

class Permission {

User user
 permissionString

 constraints = {static
 permission unique: 'user'
 }
}

Register the class name along with the other Spring Security attributes in using the Config.groovy
 property,grails.plugins.springsecurity.shiro.permissionDomainClassName

e.g.

grails.plugins.springsecurity.shiro.permissionDomainClassName =
 'com.mycompany.myapp.Permission'

You can add other properties and methods, but the plugin expects that there is a one-to-many between
your user and permission classes, that the user property name is "user" (regardless of the actual class
name), and the permission property name is "permission".

5

If you need more flexibility, or perhaps to create this as a many-to-many, you can replace the Spring
bean that looks up permissions. Create a class in src/groovy or src/java that implements the

 interface, andgrails.plugin.springsecurity.shiro.ShiroPermissionResolver
define the method any way youSet<String> resolvePermissions(String username)
like. Register your bean as the bean in , forshiroPermissionResolver resources.groovy
example

import com.mycompany.myapp.MyShiroPermissionResolver

beans = {
 shiroPermissionResolver(MyShiroPermissionResolver)
}

Annotated service methods

Currently only Grails services and other Spring beans can be annotated, so this feature isn't available in
c o n t r o l l e r s . Y o u c a n u s e a n y o f

, org.apache.shiro.authz.annotation.RequiresAuthentication
, org.apache.shiro.authz.annotation.RequiresGuest

, org.apache.shiro.authz.annotation.RequiresPermissions
, and org.apache.shiro.authz.annotation.RequiresRoles

. See the Shiro documentation andorg.apache.shiro.authz.annotation.RequiresUser
Javadoc for the annotation syntax.

Using Shiro directly

You should use the annotations to keep from cluttering your code with explicit security checks, but the
standard methods will work:Subject

import org.apache.shiro.SecurityUtils
 org.apache.shiro.subject.Subjectimport

...

Subject subject = SecurityUtils.getSubject()

subject.checkPermission('printer:print:lp7200')

subject.isPermitted('printer:print:lp7200')

subject.checkRole('ROLE_ADMIN')

subject.hasRole('ROLE_ADMIN')

subject.isAuthenticated()

… etc

6

3 Configuration
There are a few configuration options for the Shiro integration.

All of these property overrides must be specified in
 using the grails-app/conf/Config.groovy

 suffix, for examplegrails.plugins.springsecurity

grails.plugins.springsecurity.shiro.permissionDomainClassName
=
 'com.mycompany.myapp.Permission'

Name Default Meaning

shiro.active true if the plugin is disabledfalse

shiro.permissionDomainClassName
none,
must be
set

the full class name of the permission domain class

shiro.useCache true
whether to cache permission lookups; if you disable
this they will be loaded from the database for every
request

