
1

The RabbitMQ plugin provides integration with the RabbitMQ Messaging System.

Table of contents

2

RabbitMQ Plugin - Reference Documentation
Authors: Jeff Brown, Peter Ledbrook

Version: 1.0.0

Table of Contents

1 Introduction To The RabbitMQ Plugin

1.1 Change log

2 Configuration

2.1 Configuring Queues

2.2 Configuring Exchanges

2.3 Advanced Configuration

3 Sending Messages

4 Consuming Messages

4.1 Pub-Sub

4.2 Manual queue management

4.3 Messages

5 Using The RabbitTemplate Directly

3

1 Introduction To The RabbitMQ Plugin
The RabbitMQ plugin provides integration with the RabbitMQ highly reliable enterprise messaging
system. The plugin relies on as an implementation detail, which provides a high levelSpring AMQP
abstraction for sending and receiving messages.

This guide documents configuration details and usage details for the plugin. More information on
RabbitMQ itself is available at . rabbitmq.com

1.1 Change log

Version 1.0.0 - 28 Nov 2012

First GA Release

Version 0.3.2 - 16 Mar 2011

Upgrade to Spring AMQP 1.0.0.M3

Version 0.3.1 - 14 Feb 2011

spring-core dependency now excluded

Corrected the SCM and documentation URLs in the plugin descriptor

Version 0.3 - 7 Feb 2011

Upgraded to Spring AMQP 1.0.0 M2

Added transaction support

Added support for pub/sub model

Applications can now configure exchanges and bindings in addition to queues

Applications can now connect to any virtual host, not just '/'

Bug fixes:

GRAILSPLUGINS-2496 - Messages are now picked up when the application starts

http://www.springsource.org/spring-amqp
http://www.rabbitmq.com/
http://jira.codehaus.org/browse/GRAILSPLUGINS-2496

4

2 Configuration
The plugin supports a number of configuration options which all may be expressed in

. A basic configuration might look something like this:grails-app/conf/Config.groovy

// grails-app/conf/Config.groovy
rabbitmq {
 connectionfactory {
 username = 'guest'
 password = 'guest'
 hostname = 'localhost'
 }
}

Those are settings which are necessary in order for the plugin to be able to connect to and communicate
with a RabbitMQ server.

Following is a list of other configuration settings supported by the plugin.

Configuration Property Description Default

rabbitmq.connectionfactory.username The user name for connection to the server (none)

rabbitmq.connectionfactory.password The password for connection to the server (none)

rabbitmq.connectionfactory.hostname The host name of the server (none)

rabbitmq.connectionfactory.virtualHost The name of the virtual host to connect to '/'

rabbitmq.connectionfactory.channelCacheSize The connection channel cache size 10

rabbitmq.concurrentConsumers

The number of concurrent consumers to
create per message handler. Raising the
number is recommended in order to scale the
consumption of messages coming in from a
queue. Note that ordering guarantees are lost
when multiple consumers are registered.

1

rabbitmq.disableListening
Disables all service listeners so that they
won't receive any messages.

false

rabbitmq.retryPolicy.maxAttempts
Sets the maximum number of retries for
failed message deliveries

0

2.1 Configuring Queues
Queues must be declared in the RabbitMQ server before consumers can be associated with those
queues and before messages may be sent to those queues. If the Grails application will be sending
messages to or receiving messages from queues that may not already be declared in the RabbitMQ
server, the application needs to declare those queues up front. One way to do that is to add beans to the
Spring application context of type . That mightorg.springframework.amqp.core.Queue
look something like this:

5

// grails-app/conf/spring/resources.groovy
beans = {
 myQueue(org.springframework.amqp.core.Queue, 'myQueueName')
 myOtherQueue(org.springframework.amqp.core.Queue, 'myOtherQueueName') {
 autoDelete = false
 durable = true
 exclusive = false
 arguments = [arg1: 'val1', arg2: 'val2']
 }
}

The plugin also supports a DSL for describing these queues. This DSL is expressed in
. The code below configures the same queues as thegrails-app/conf/Config.groovy

previous code sample.

// grails-app/conf/Config.groovy
rabbitmq {
 connectionfactory {
 username = 'guest'
 password = 'guest'
 hostname = 'localhost'
 }
 queues = {
 myQueueName()
 myOtherQueueName autoDelete: , durable: , exclusive: ,false true false
arguments: [arg1: 'val1', arg2: 'val2']
 }
}

With both techniques, the , and attributesautoDelete durable exclusive
default to and the attribute defaults to null.false arguments

So what do those queue options mean?

Option Description

autoDelete
If , the queue will be removed from the broker when there are no more clientstrue
attached to it. Note that this doesn't take effect until after at least one client connects to
the queue.

durable If , the queue will survive a restart of the broker.true

exclusive Only the client that created the queue can connect to it.

One final thing: when you declare a standalone queue like this, it automatically gets bound to the
broker's default exchange, which has an implicit name of '', i.e. the empty string. You can easily send
messages to this queue via the method. rabbitSend

2.2 Configuring Exchanges

6

1.

2.

Queues are the foundation of consuming messages, but what if you want to send messages? In AMQP,
you send messages to an exchange and the exchange then routes those messages to the appropriate
queues based on something called a binding. The key to setting up complex messaging systems lies in
configuring these exchanges and queues appropriately.

Declaring an exchange

Let's start with an example of how to set up a simple exchange (with no queues):

rabbitmq {
 connectionFactory {
 …
 }
 queues = {
 exchange name: 'my.topic', type: topic
 }
}

As you can probably guess, this will create a topic exchange with the name 'my.topic'. There are two
things to note at this point:

the name and type are required

the type value is a string literalnot

So what types are available to you?

Type Description

direct
An exchange that only routes messages that are bound to it with a key that matches the
routing key of the message exactly. Typically this exchange is used for point-to-point
messaging and the routing key is the queue name.

fanout Sends messages to all queues bound to it. It basically does a broadcast.

topic
Similar to the exchange, this routes messages to the queues bound to it, but onlyfanout
queues whose binding matches a message's routing key will receive that message. Wildcards
are supported in the binding.

headers
Similar to topic, but messages can be filtered by other any message header, not just the
routing key.

The exchange declaration also supports a couple of extra options that should be familiar from the queue
declarations:

Option Description

autoDelete
If , the exchange will be removed from the broker when there are no more queuestrue
bound to it. Note that this doesn't take effect until at least one queue is bound to the
exchange.

durable If , the exchange will survive a restart of the broker.true

7

1.

2.

3.

With the above syntax, it is up to you to bind queues to the exchange via another AMQP client or via
the RabbitMQ management interface. In other words, this is most suitable if your Grails application is
purely a publisher of messages and not a consumer (or at least not a consumer of 'my.topic' messages).

What if you want to create queues and automatically bind them to the exchange? Don't worry, that's
supported by the configuration DSL too.

Binding queues to exchanges

An exchange on its own isn't particularly useful, but we can easily bind queues to it by declaring them
as nested entries:

rabbitmq {
 connectionFactory {
 …
 }
 queues = {
 exchange name: 'my.topic', type: topic, durable: , {false
 foo durable: , binding: 'shares.#'true
 bar durable: , autoDelete: , binding: 'shares.nyse.?'false true
 }
 }
}

In the example above, we bind two queues ('foo' and 'bar') to the exchange 'my.topic'. Since this is a
topic exchange, we can use a binding key to filter which messages go from 'my.topic' to each queue. So
in this case, only messages with a routing key beginning with 'shares.' will end up on the 'foo' queue.
'bar' will only receive messages whose routing key begins with 'shares.nyse.'.

This approach isn't limited to topic exchanges: you can automatically bind queues to any exchange
type. There are a few things to bear in mind though:

the default binding for direct exchanges is the queue name (unless this is explicitly overridden by
a 'binding' option);

the 'binding' is ignored for fanout exchanges; and

the headers exchange requires a map of message header names and values for its binding.

RabbitMQ has several built-in exchanges with names of the form 'amq.*', for
example 'amq.direct'. If you want to bind to these, you currently have to declare
them with the correct attributes, i.e.

exchange name: , type: direct, durable: ,"amq.direct" true
autoDelete: false

As you can imagine, these few building blocks allow you to configure some pretty complex messaging
systems with very little effort. You can tailor the messaging system to your needs rather than tailor
your applications to the messaging system.

8

2.3 Advanced Configuration
When you need fine-grained control over your service listeners, you can tap into the power of Spring.
Since each service listener is implemented as a set of Spring beans, you can use Grails' bean property

 mechanism to provide your own low-level settings.override

So how are these beans set up? If a service has either a or rabbitQueue rabbitSubscribe
property, then you will have these beans:

<serviceName>_MessageListenerContainer of type
SimpleMessageListenerContainer

<serviceName>RabbitAdapter of type MessageListenerAdapter

As an example, let's say you have a like so:MessageStoreService

class MessageStoreService {
 rabbitSubscribe = [exchange: , routingKey:]static "amq.topic" "logs.#"
 …
}

You can then customise things like the number of concurrent consumers, whether the channel is
transacted, what the prefetch count should be, and more! Simply add code like this to your runtime
configuration (Config.groovy):

beans {
 messageStoreService_MessageListenerContainer {
 channelTransacted = false
 concurrentConsumers = 10
 prefetchCount = 5
 queueNames = [,] as []"q1" "q2" String
 }

messageStoreServiceRabbitAdapter {
 encoding = "UTF-8"
 responseRoutingKey = "replyQueue"
 }
}

This approach works for any property that accepts a basic type. But what about bean references? In this
case, you can't use the bean property overrides. Fortunately, the most common bean reference you are
likely to want to override, the message converter, has a dedicated configuration option:

rabbitmq.messageConverterBean = "myCustomMessageConverter"

This is a global setting that accepts the name of a message converter bean. For the rare occasions that
you need to override other bean references, you can declare your own

 or <serviceName>_MessageListenerContainer <serviceName>_RabbitAdapter
beans in resources.groovy.

Finally, you can override some of the global config options on a per-service basis:

http://grails.org/doc/latest/guide/spring.html#propertyOverrideConfiguration
http://grails.org/doc/latest/guide/spring.html#propertyOverrideConfiguration
http://static.springsource.org/spring-amqp/docs/1.0.x/apidocs/org/springframework/amqp/rabbit/listener/SimpleMessageListenerContainer.html
http://static.springsource.org/spring-amqp/docs/1.0.x/apidocs/org/springframework/amqp/rabbit/listener/adapter/MessageListenerAdapter.html

9

rabbitmq {
 services {
 messageStoreService {
 concurrentConsumers = 50
 disableListening = true
 }
 }
}

There are many options for customisation and we hope the above will get you started.

10

3 Sending Messages
The plugin adds a method named to all Grails artefacts (Controllers, Services, TagLibs,rabbitSend
etc...). The method accepts 2 parameters. The first parameter is a queue name and therabbitSend
second parameter is the message being sent.

class MessageController {

def sendMessage = {
 rabbitSend 'someQueueName', 'someMessage'
 …
 }
}

Messages may also be sent by interacting with the Spring bean directly. See the RabbitTemplate
 section for more information. Using The RabbitTemplate Directly

11

1.

2.

1.

2.

4 Consuming Messages
The plugin provides two simple ways of consuming messages:

from a named Queue

by subscribing to an exchange (the traditional pub/sub model)

Which approach you take depends on whether you want to implement the pub/sub messaging model
and how much control you need.

4.1 Pub-Sub
One of the most common messaging models people use involves a producer broadcasting messages to
all registered listeners (or more accurately, consumers). This is known as the publish/subscribe model,
or pub/sub for short. There are two steps to getting this set up in Grails:

create the exchange you're going to publish messages to

create some consumers that subscribe to that exchange

The first step can be done either outside of the Grails application or in the plugin's configuration. If the
Grails application is the publisher, then it makes sense to declare the exchange in

.grails-app/conf/Config.groovy

The second step is dead easy with the plugin: create a service with a static rabbitSubscribe
property and a method. Here's an example:handleMessage()

package org.example

class SharesService {
 rabbitSubscribe = 'shares'static

void handleMessage(message) {
 // handle message…
 }
}

As long as the broker contains an exchange with the name , the willshares SharesService
receive all messages sent to that exchange. Every time a message is received from the broker, the
service's method is called with the message as its argument. We'll talk morehandleMessage()
about messages shortly.

The option only makes sense when applied to fanout andrabbitSubscribe
topic exchanges.

In the case of a topic exchange, you can filter messages based on the routing key. By default your
service will receive all messages, but you can override this with an alternative syntax for

:rabbitSubscribe

12

package org.example

class SharesService {
 rabbitSubscribe = [name: 'shares', routingKey: 'NYSE.GE']static
 …
}

In this example, the service will only receive messages that have a routing key of 'GE'. Of course, you
can use standard AMQP wildcards too like 'NYSE.#', which will match all messages with a routing key
that starts with 'NYSE.'.

Under the hood, the plugin creates a temporary, exclusive queue for your service which is removed
from the broker when your application shuts down. There is no way for you to control the name of the
queue or attach another listener to it, but then that's the point in this case. If you do need more control,
then you must manage the queues and their bindings yourself.

The map syntax also allows you to customise the properties of the Spring message listener container
and the corresponding listener adapter (see the section on for more details onadvanced configuration
these). For example,

static rabbitSubscribe = [
 name: 'shares',
 routingKey: 'NYSE.GE',
 encoding: ,"ISO-8859-1"
 prefetchCount: 1]

will set the encoding and prefetch count for just this service listener. This technique is also possible for
straight queue listeners as well.

4.2 Manual queue management
The plugin provides a convention based mechanism for associating a listener with a queue. Any Grails
Service may express that it wants to receive messages on a specific queue by defining a static property
named and assigning the property a string which represents the name of a queue.rabbitQueue

package org.grails.rabbitmq.test

class DemoService {
 rabbitQueue = 'someQueueName'static

void handleMessage(message) {
 // handle message…
 }
}

As with the pub/sub model, messages are delivered to the service by invoking the
 method. That's all there is to it! The real trick is to configure your exchangeshandleMessage()

and queues with appropriate bindings, as we described in the configuration section.

If you want more say in the configuration of the underlying listener, then you can also specify a map:

static rabbitQueue = [queues: , channelTransacted:]"someQueueName" true

13

The "queues" option can either be a simple queue name or a list of queue names. Again, have a look at
the for information about the extra properties you can set here.advanced configuration section

One last subject to discuss is the form that the messages take.

4.3 Messages
What is a message? In the examples you've seen in this section, the message has been some arbitrary
object but we haven't discussed what the type of that object might be. That's because, it can be pretty
much anything! Within the messaging system, the content of a message is simply a byte array - it's up
to the producer can consumer to interpret/convert that raw data.

Fortunately the plugin (via) automatically handles messages whose content is in familiarSpring AMQP
forms, including:

strings

byte arrays

maps

other serializable types

One manifestation of this support is that different message types may be handled with overloaded
versions of :handleMessage()

package org.grails.rabbitmq.test

class DemoService {
 rabbitQueue = 'someQueueName'static

void handleMessage(textMessage) {String
 // handle message…String
 }

void handleMessage(Map mapMessage) {
 // handle Map message…
 }

void handleMessage([] byteMessage) {byte
 // handle array message…byte
 }
}

This is a great convenience, but be aware that using serializable Java objects limits the types of client
you can interact with. If all the clients you're interested in are using Spring AMQP, then you should be
fine, but don't expect Ruby or Python clients to handle messages! For production systems, weMap
recommend you use strings and byte arrays.

Sometimes you want access to the raw message, particularly if you want to look at the message
headers. If so, just change the signature of the method and add an extra option tohandleMessage()
your or property:rabbitQueue rabbitSubscribe

http://static.springsource.org/spring-amqp/docs/1.0.x/reference/html/#d0e335

14

package org.grails.rabbitmq.test

 org.springframework.amqp.core.Messageimport

class DemoService {
 rabbitQueue = [queues: 'someQueueName', messageConverterBean: '']static

void handleMessage(Message msg) {
 // Do something with the message headers
 println "Received message with content type
${msg.contentType};${msg.encoding}"
 …
 }
}

As you can see, all you have to do is accept an argument of type and add the Message
 option with an empty string as its value. This disables the automaticmessageConverterBean

message conversion, allowing you to interrogate the raw message as required.

15

5 Using The RabbitTemplate Directly
Most of the interaction with the RabbitMQ server is being handled by an instance of .RabbitTemplate
For many applications this is happening at a lower level than the application needs to be concerned
with. The plugin does provide a Spring bean to the application context that is an instance of the

 class which may be used directly. The bean name is .RabbitTemplate rabbitTemplate

class MessageController {

def rabbitTemplate

def sendMessage = {
 rabbitTemplate.convertAndSend('someQueueName', 'someMessage)
 …
 }
}

http://static.springsource.org/spring-amqp/docs/1.0.x/apidocs/org/springframework/amqp/rabbit/core/RabbitTemplate.html

