
1

Allows you to publish Grails plugins, either to a public or private repository. It also supports
deploying Grails applications and plugins to Maven repositories without the need to use Maven
directly.

Release Plugin - Reference Documentation
Authors: Peter Ledbrook

Version: 3.0.0

Table of Contents

1 Introduction

1.1 Migrating from release-plugin

2 Configuration

2.1 Repositories

2.2 Plugin portals

2.3 Source control management

3 Maven integration

3.1 The local Maven cache

3.2 Deployment to remote repositories

4 Publishing Grails plugins

4.1 Publishing to Grails Central Plugin Repository

4.2 Custom repositories and plugin portals

http://springsource.com
http://grails.org


2

1 Introduction
Many Grails projects are private applications and the only "publication" of those applications involves
deploying the generated WAR file to a servlet container like Tomcat. But sometimes, particularly in the
case of plugins, you want to share the project's WAR, zip or JAR. That's where the Release plugin
comes in.

Once this plugin is installed, you can immediately start publishing your artifacts to Maven-compatible
repositories. In the case of plugins, you can also publish them to Subversion-based repositories such as
the Grails Central Plugin Repository. This user guide will show you exactly what you need to do.

1.1 Migrating from release-plugin
Starting with Grails 2.0, the Release plugin replaces the old  command.release-plugin
Fortunately, you should have little trouble switching to the new  command. Let'spublish-plugin
take a look at the most important differences (apart from the name change!).

No --zipOnly option

The new  command has a more flexible approach to source control managementpublish-plugin
than  and so the  option is no longer available. Instead, you specifyrelease-plugin --zipOnly
whether you want the plugin to manage source control integration via the new  and --scm --noScm
options. The former is effectively the default, but you can disable SCM for the project via the 

 build configuration option.grails.release.scm.enabled

The source control management is handled by plugins, such as the Subversion plugin that this plugin
depends on. If you don't have the appropriate plugin for your SCM system, you won't be able to use the
SCM integration.

Configuration changes

Although your old repository configurations will continue to work, i.e. ones like 
 used by , there is far moregrails.plugin.repos.distribution.<id> release-plugin

flexibility if you migrate to the latest style of repository and portal configuration. In particular, by using
the syntax described in the  you'll be able to put repository credentials and URLsconfiguration chapter
in your personal ~/.grails/settings.groovy file.

You can also continue to use the repository configuration options supported by the old Maven Publisher
plugin, but again, the new syntax is preferable.

New metadata

You can put extra metadata into your plugin descriptor, which will then be reflected both in the plugin's
POM and in the Grails plugin portal. For example, you can specify:



3

def license = "APACHE"
def organization = [ name: , url: "SpringSource"

 ]"http://www.springsource.org/"
def developers = [
        [ name: , email:  ],"Peter Ledbrook" "pledbrook@somewhere.net"
        [ name: , email:  ] ]"Graeme Rocher" "grocher@somewhere.net"
def issueManagement = [ system: , url: "JIRA"

 ]"http://jira.grails.org/browse/GRAILSPLUGINS"
def scm = [ url: 

 ]"http://svn.grails-plugins.codehaus.org/browse/grails-plugins/"

Note that the  property should only include additional entries over and above the developers
. In other words, the primary author should still be declared in the  and author author

 properties with only additional people going into the  list.authorEmail developers

The plugin currently supports the licenses listed in the
source(https://github.com/nwwells/grails-release/blob/master/scripts/_GrailsMaven.groovy#L31), but
you can also specify a custom license via an explicit name and URL:

def license = [name: , url: "MYLICENSE"
]"http://my.company.com/licenses/opensource.txt"



4

2 Configuration
You can use the  command to release plugins to the Grails Central Pluginpublish-plugin
Repository without any configuration whatsoever, but if you want to manage your own plugin
repository and/or portal you will have to master the available configuration settings. The same goes if
you want to deploy artifacts to a custom Maven-compatible repository. But don't worry: it's all very
straightforward.

All the configuration options described in the next section can either go into your project's 
 file or your personal . The latter isBuildConfig.groovy ~/.grails/settings.groovy

particular useful for storing credentials since the file is typically not stored in a shared source
repository, thus making it easy to keep that information confidential.

Let's start by looking at how you can configure a Maven-compatible repository, since this is the most
common scenario.

2.1 Repositories
With tools like  and , it's pretty easy to set up a Maven-compatible repository theseNexus Artifactory
days. Fortunately, it's equally easy to publish Grails plugins and applications to such repositories.

Let's say you have a repository running on your local machine and you want to deploy a plugin to it.
Your first step should be to assign the repository a unique ID, such as 'myRepo'. Next, you tell Grails
where to find the repository by adding an entry to  specifying its URL:BuildConfig.groovy

grails.project.repos.myRepo.url = "http://localhost:8081/repos"

The general form of the above configuration option is grails.project.repos.<repoId>.url
.

You can not use a repository ID of 'grailsCentral'. That is because it is reserved for
the Grails Central Plugin Repository. The good news is that you can configure the
username and password for 'grailsCentral' via the options described below.

You can now deploy artifacts to the repository by passing a  argument to--repository=myRepo
either the  or  commands. Since you often deploy a plugin or application topublish-plugin maven-deploy
the same repository again and again, typing that argument gets a bit laborious, so you can also specify
the name of a default repository to deploy to:

grails.project.repos.  = default "myRepo"

The above configuration option means that a project will be deployed to "myRepo" unless an explicit 
 argument is provided on the command line. You can also pass a value of--repository

"grailsCentral" for the command line option or the 'default' config setting to indicate you want to
publish to the Grails Central Plugin Repository. Note that the command line option always takes
precedence over other settings.

http://nexus.sonatype.org/
http://www.jfrog.com/products.php


5

Things become slightly more verbose if you want to provide extra details about the repository. What
about user credentials for example? Here's a comprehensive configuration:

grails.project.repos.myRepo.url = "http://localhost:8081/repos"
grails.project.repos.myRepo.type = "maven"
grails.project.repos.myRepo.username = "admin"
grails.project.repos.myRepo.password = "password"
grails.project.repos.myRepo.portal = "grailsCentral"

As you can see, even a complete explicit configuration is pretty short. So what do the various entries
mean?

url - the URL to use when connecting to the remote repository. Typically this is HTTP-based, but
"svn+ssh" is not uncommon for old-style Subversion plugin repositories.

type - can be either "maven" or "svn", but the former is the default value so it's rare to explicitly
declare a value of "maven" for this option.

username - the username for connecting to the repository.

password - the password for connecting to the repository.

portal - the ID of the plugin portal to notify when publishing a plugin to this repository. Only
affects the  command.publish-plugin

These settings are common to both Maven-compatible and Subversion repositories - it's only the values
that typically differ between them. It's also worth bearing in mind that Subversion repositories can only
be used for plugins.

The last option, , raises the question of how to declare plugin portals. What exactly is meant byportal
a portal ID? The answer lies with portal configuration.

2.2 Plugin portals
When a Grails plugin is published to a repository, a plugin portal can optionally be notified of the
release. For example, when you publish a plugin to the Grails Central Plugin Repository, the command
will automatically notify the  on the grails.org website. That means people can seemain plugin portal
the details of the new release almost immediately.

Like repositories, portals have very few configuration options:

grails.project.portal.<portalId>.url =  "http://beta.grails.org/plugin/"
grails.project.portal.<portalId>.username =  "joe"
grails.project.portal.<portalId>.password = "ht56jU&B"

url - the URL of the plugin portal.

username - the username to use when notifying the portal.

password - the password to use.

One thing to bear in mind: as with repositories, the ID 'grailsCentral' is reserved, this time for the main
 on grails.org. Of course, you can still configure a username and password for this portalplugin portal

using the above settings.

http://grails.org/plugins
http://grails.org/plugins/
http://grails.org/plugins/


6

2.3 Source control management
By default, source control management is enabled for the  command. This meanspublish-plugin
that the command ensures that the latest changes are committed and tagged before a plugin is published.
If you don't want the command to do this, then you can disable it via the  command line--noScm
option, but that gets tedious if you use it every time you run the command.

An alternative approach is to use a configuration setting to disable source control management for the
project (or all projects if you put it into ):~/.grails/settings.groovy

grails.release.scm.enabled = false

Once the above setting is in place,  will no longer attempt to commit and tagpublish-plugin
source changes. Of course, if you do this you lose the benefit of the plugin keeping the source and the
published plugins reliably in sync.



7

3 Maven integration
One of the best things that sprung from Maven was a standard way to provide Java dependencies to
projects via HTTP-based repositories. Not only do we now have the Maven Central repository, but it's
almost trivial to set up your own company-wide Maven-compatible repositories using tools like Nexus
or . Following on from the Maven Publisher plugin, the Release plugin provides everythingArtifactory
you need to easily and effectively deploy your project artifacts to such repositories.

Before we look at deployment to one of these remote repositories, let's look at another aspect of Maven:
installing artifacts into the local Maven cache.

3.1 The local Maven cache
When Maven builds a project, it first looks for the project's dependencies in the local Maven cache (by
default ). Only if a dependency is not in the cache does Maven pull it$HOME/.m2/repository
from the appropriate remote repository. This makes testing pretty easy: simply install your own version
of the artifact into the Maven cache and that's the one that Maven will use. You don't have to deploy a
development version of an artifact to a remote repository just to test it.

This approach doesn't only work for Maven. Grails can also pull artifacts from the Maven cache if you
add the following entry to your project's  file:BuildConfig.groovy

grails.project.dependency.resolution = {
    …
    repositories {
        mavenLocal()
        …
    }
    …
}

So how do you get your plugins or WAR files into the Maven cache? With the  command:maven-install

grails maven-install

That's it! You can then test your new artifact locally. If you want, you can change where your artifacts
are installed by adding the following configuration option to either  or BuildConfig.groovy

:settings.groovy

grails.project.mavenCache = "target/m2cache"

By adding this option to  it will apply to every project that doesn't override it, sosettings.groovy
be careful!

Installing artifacts to the local Maven cache is trivial, so what about remote deployment?

3.2 Deployment to remote repositories
TBC See  for the moment.maven-deploy

http://nexus.sonatype.org/
http://www.jfrog.com/products.php


8

1.  

2.  

3.  

4 Publishing Grails plugins
If you want to make your Grails plugins available to other people, then the best approach is to publish
them using this plugin. The publication process is straightforward:

Package the plugin as a zip or jar

Deploy it to a Maven or Subversion repository

Optionally notify a plugin portal of the release

The  command does all of this for you. It can also integrate with a source controlpublish-plugin
management (SCM) provider if a corresponding plugin is installed, ensuring that all your changes are
committed and tagged before the plugin is published. You'll find more information about this later.

4.1 Publishing to Grails Central Plugin Repository
The most common use case for the  command is to publish a public plugin so thatpublish-plugin
it is available to all Grails users; well, to those that have an internet connection at least. Because of this,
the command's default configuration is geared towards the Grails Central Plugin Repository. As long as
you have a , simply installing the Release plugin and executingGrails.org account

grails publish-plugin

will do everything necessary to publish the plugin and announce its release. Note however you require
prior permission granted in order to publish a particular plugin. See the details on requesting permission

 for more information.to publish a plugin

During the publishing process you may be asked for your grails.org usernames and passwords, but
otherwise that's it. Your plugin will be deployed to the Grails Central Plugin Repository, its plugin
portal page on grails.org will be updated, and the release will be announced on various channels such as
Twitter (user @grailsplugins).

It's a pain to enter your username and password every time you publish a plugin, so you can set these
for the Grails Central Plugin Repository in :~/.grails/settings.groovy

grails.project.repos.grailsCentral.username = "me"
grails.project.repos.grailsCentral.password = "s0longf!shthanks"

The above values will be used whenever you publish to the Grails Central Plugin Repository and
grails.org.

4.2 Custom repositories and plugin portals
Not all plugins should be publicly available: some are too specific to certain projects while others are
confidential. Still, teams can gain big advantages from deploying such plugins to their own private
repositories. Because of that, the Release plugin can of course publish plugins to any target repository
and even notify private plugin portals.

http://grails.org/Creating+Plugins
http://grails.org/Creating+Plugins
http://grails.org/Creating+Plugins


9

Repository types and configuration

Grails supports two types of plugin repository: the traditional Subversion-based one and
Maven-compatible. The public plugin repository is currently an example of the former. All you need to
do is set up a standard Subversion repository and the Release plugin will do the rest.

Maven-compatible ones can be easily set up with either  or . Subversion-basedArtifactory Nexus
repositories are useful for older versions of Grails, but if you only use Grails 1.3 or above, we
recommend you use a Maven-compatible repository for your plugins.

Whichever type of repository you go for, the  are mostly the same. The keyconfiguration settings
options are the repository URL and the username and password for deploying to the repository. All of
these can be configured in either  or .~/.grails/settings.groovy BuildConfig.groovy
Typically, a single repository hosts many plugins, so it's usually a good idea to put the configuration in 

 and then specify in  whichsettings.groovy grails-app/conf/BuildConfig.groovy
repository a plugin should be published to by default:

grails.project.repos.  = default "companyRepo"

or

grails.project.repos.  = default "grailsCentral"

for example. This saves you from having to use the  command line argument every--repository
time you publish a plugin, although you can still use it to override the default. For example, you may
have a local Maven-compatible repository you want to test deployment to, so you could configure it in 

 and then run:settings.groovy

grails publish-plugin --repository=localReleases

One last thing: the Release plugin handles the differences between publishing to Subversion and
Maven-compatible repositories, but you still need to let it know what type you're using. By default it
assumes a Maven-compatible repository, but you can declare as repository as a Subversion one through
its  configuration option. Just set it to "svn".type

Your own plugin portal

How would you like your own plugin portal for your private plugins? You'll be able to see what plugins
are available, tag them and do searches. The  at grails.org is part of that web site,public plugin portal
but it's also an  on GitHub. There are also plans to extract the plugin portal so that itopen source project
can be used independently of the grails.org web site.

http://www.jfrog.com/products.php
http://nexus.sonatype.org/
http://grails.org/plugins
http://github.com/grails-samples/grails-website


10

Currently, your best option if you want your own portal is to grab a copy of the grails.org source code
and run your own version locally. It's a Grails application, so it's not hard to get it started. Once it's up
and running, it provides a REST API that the Release plugin can use for plugin release notifications.
The portal updates the information for the given plugin and then announces the release in various ways.
You'll probably want to disable the announcements, which you can do by modifying the 

 method.PluginUpdateService.announceRelease()

Configuring the Release plugin to notify your own portal is straightforward and described in the 
. Remember, you can specify a default portal for each project and you can alsoconfiguration section

override that default via the  command line argument.--portal

http://github.com/grails-samples/grails-website/blob/master/grails-app/services/org/grails/plugin/PluginUpdateService.groovy#L157

