

 Burt Beckwith

 INTRODUCTION TO THE SPRING SECURITY SHIRO PLUGIN

The Spring Security Shiro plugin adds some support for using a hybrid approach combining Spring Security﻿ and Shiro﻿. It currently only supports Shiro ACLs, since Spring Security ACLs are very powerful but can be very cumbersome to use, and the Shiro approach is straightforward and simple.

The majority of the authentication and authorization work is still done by Spring Security. This plugin listens for Spring Security authentication events and uses the Spring Security Authentication﻿ instance to build and register a Shiro Subject﻿ instance. It also removes the Shiro credentials when you explicitly logout.

History

	
Version 3.2

	
Added optional role-based permissions capability

	
Version 3.1.1

	
released April 19, 2018

	
Update Spring Security Shiro version to 1.4.0

	
Added a configuration to disable shiroAttributeSourceAdvisor

	
Version 3.1.0

	
released April 19, 2018

	
Support for Grails 3.3.0

	
Updated to Spring Security Core v3.2.1

	
Version 3.0.1

	
released April 19, 2018

	
Updated Shiro version to 1.4.0

	
Version 3.0.0

	
released December 8, 2015

	
Version 1.0.0

	
released December 7, 2015

	
Version 1.0-RC1

	
released October 05, 2013

	
Version 0.1

	
released January 06, 2013

 Burt Beckwith

 USAGE

To use the plugin, register a dependency by adding it to the dependencies﻿ block in build.gradle:

dependencies {
 ...
 compile 'org.grails.plugins:spring-security-shiro:3.1.2.BUILD-SNAPSHOT'
 ...
}

and run the compile﻿ command to resolve the dependencies:

$ grails compile

This will transitively install the Spring Security Core﻿ plugin, so you’ll need to configure that by running the s2-quickstart﻿ script.

User Permissions

To use the Shiro annotations and methods you need a way to associate roles and permissions with users. The Spring Security Core plugin already handles the role part for you, so you must configure permissions for this plugin. There is no script to create a domain class, but it’s a very simple class and easy to create yourself. It can have any name and be in any package, but otherwise the structure must look like this:

package com.mycompany.myapp

class Permission {

 User user
 String permission

 static constraints = {
 permission unique: 'user'
 }
}

Register the class name along with the other Spring Security attributes in application.groovy﻿ (or application.yml﻿) using the grails.plugin.springsecurity.shiro.permissionDomainClassName﻿ property, e.g.

grails.plugin.springsecurity.shiro.permissionDomainClassName =
 'com.mycompany.myapp.Permission'

You can add other properties and methods, but the plugin expects that there is a one-to-many between your user and permission classes, that the user property name is “user” (regardless of the actual class name), and the permission property name is “permission”.

If you need more flexibility, or perhaps to create this as a many-to-many, you can replace the Spring bean that looks up permissions. Create a class in src/main/groovy that implements the grails.plugin.springsecurity.shiro.ShiroPermissionResolver﻿ interface, and define the Set<String> resolvePermissions(String username)﻿ method any way you like. Register your bean as the shiroPermissionResolver﻿ bean in resources.groovy﻿, for example

import com.mycompany.myapp.MyShiroPermissionResolver

beans = {
 shiroPermissionResolver(MyShiroPermissionResolver)
}

Role Permissions

Shiro can use both user-based and role-based permissions. The Spring Security Shiro plugin includes optional support for this capability. If role-based permissions are enabled, the effective permissions for a user becomes the union of both the user-based permissions and the role-based permissions for the user’s roles, and all calls that expect permissions will use the union of the two. The Spring Security Core plugin handles the roles for you but you must configure permissions for the role.

As with the user-based permissions, there is no script to create a domain class, but it is simple to create one. It can also have any name and be in any package, but otherwise the structure must look like this:

package com.mycompany.myapp

class RolePermission {
 Role role
 String permission

 RolePermission(Role role, String permission) {
 this.role = role
 this.permission = permission
 }

 static constraints = {
 permission unique: 'role'
 }
}

Register the class name along with the other Spring Security attributes in application.groovy﻿ (or application.yml﻿) using the grails.plugin.springsecurity.shiro.rolePermissionDomainClassName﻿ property, e.g.

grails.plugin.springsecurity.shiro.rolePermissionDomainClassName = 'com.mycompany.myapp.RolePermission'

You can add other properties and methods, but the plugin expects that there is a one-to-many between your role and permission classes, that the role property name is “role” (regardless of the actual class name), and the permission property name is “permission”.

If you need more flexibility, you can replace the Spring bean that looks up role-based permissions. Create a class in src/main/groovy that implements the import org.apache.shiro.authz.permission.RolePermissionResolver﻿ interface, and define the Collection<Permission> resolvePermissionsInRole(String roleString)﻿ method any way you like. Note that the collection of permissions returned are of type org.apache.shiro.authz.Permission﻿, not the Permission you have defined in your application. You can use the grails.plugin.springsecurity.shiro.GormShiroRolePermissionResolver﻿ as an example for your own implementation.

Register your bean as the shiroRolePermissionResolver﻿ bean in resources.groovy﻿, for example

import com.mycompany.myapp.MyShiroRolePermissionResolver

beans = {
 shiroRolePermissionResolver(MyShiroRolePermissionResolver)
}

Annotated service methods

Currently only Grails services and other Spring beans can be annotated, so this feature isn’t available in controllers. You can use any of RequiresAuthentication﻿, RequiresGuest﻿, RequiresPermissions﻿, RequiresRoles﻿, and RequiresUser﻿. See the Shiro documentation﻿ and Javadoc﻿ for the annotation syntax.

Using Shiro directly

You should use the annotations to keep from cluttering your code with explicit security checks, but the standard Subject﻿ methods will work:

import org.apache.shiro.SecurityUtils
import org.apache.shiro.subject.Subject

...

Subject subject = SecurityUtils.getSubject()

subject.checkPermission('printer:print:lp7200')

subject.isPermitted('printer:print:lp7200')

subject.checkRole('ROLE_ADMIN')

subject.hasRole('ROLE_ADMIN')

subject.isAuthenticated()

... etc

 Burt Beckwith

 CONFIGURATION

There are a few configuration options for the Shiro integration.

All of these property overrides must be specified in grails-app/conf/application.groovy﻿ (or application.yml﻿) using the grails.plugin.springsecurity﻿ suffix, for example

grails.plugin.springsecurity.shiro.permissionDomainClassName =
 'com.mycompany.myapp.Permission'

	Name﻿
	Default﻿
	Meaning﻿

	shiro.active

	true﻿

	if false﻿ the plugin is disabled

	shiro.permissionDomainClassName

	none﻿, must be set

	the full class name of the permission domain class

	shiro.rolePermissionDomainClassName

	none﻿

	if set, the full class name of the role permissions domain class

	shiro.useCache

	true﻿

	whether to cache permission lookup; if you disable this they will be loaded from the database for every request

	shiro.inspectShiroAnnotations

	true﻿

	Whether to enable/disable shiroAttributeSourceAdvisor

OEBPS/nav.xhtml

Spring Security Shiro Plugin - Reference Documentation

Table of Contents

		Introduction to the Spring Security Shiro Plugin

		Usage

		Configuration

OEBPS/jacket/cover.png
Asciidoctor EPUB3

OEBPS/avatars/default.jpg

OEBPS/headshots/default.jpg

